
RETAILERS PLEASE DISPLAY
UNTIL AUGUST 31, 2007

 JDJ.SYS-CON.COM VOL.12 ISSUE:6

No. 1 i-Technology Magazine in the World

JDJ.SYS-CON.COM VOL.12 ISSUE:6

No. 1 i-Technology Magazine in the World

 JDJ.SYS-CON.COM

T H E W O R L D ’ S L E A D I N G i - T E C H N O L O G Y M A G A Z I N E J D J . S Y S - C O N . C O M

PLUS...
Securing Tomcat
Database Passwords

Java API for XML
Web Services (JAX-WS)

The Evolution
of Java

COM
ING TO NEW

 YORK CITY! SEE PAGES 29 and 31

www.SOAWorld2007.com

3-DAY EVENT!

PLUS

MODEL-BASED TESTING FOR JAVA APPLICATIONS PAGE 6

Altova® XMLSpy® 2007 – The industry standard XML development environment.

Join Altova at

Microsoft TechEd,

Orlando

Booth # 908

Immerse yourself in

XML intelligence

XMLSpy is also available as part of
the value-packed Altova MissionKit™

software bundle.

Altova® XMLSpy, the industry standard XML

development environment, is vital for

modeling, editing, transforming, and

debugging XML applications.

Breathe life into your plans

with the world's leading XML

editor, the original graphical

schema designer, a code

generator, file converters,

debuggers, profilers, full

database integration, support

for XSLT, XQuery, WSDL, SOAP,

and a trove of treasured XML

utilities and usability aides.

Become a markup mastermind!

Download XMLSpy® 2007 today:

www.altova.com

Dive into XMLSpy® 2007, and take
XML development to greater depths.

Spied in Version 2007 Release 3:
� Deep integration with IBM DB2 9: pureXML data server
� Support for new MS Office document format – Open XML
� New database query window supporting SQL, SQL/XML, and XQuery
� New intelligent CSS editor with context-sensitive entry helpers

XMLSpy_JDJ.qxp 5/14/2007 4:50 PM Page 1

aving attended two conferences in
the past three weeks and seen un-
told presentations, I’ve come to the
conclusion that irrespective of the

subject matter, each presenter invariably falls
back on the same technique to impress the
audience: to rely on the skills of a conjurer
or circus ringmaster as they try to captivate,
amaze, and hoodwink their audience.

The Magic Show
 Magicians rely on a basic technique to
dazzle and fool their audience. They set up
the promise of something really difficult
– “I’m going to make this rabbit disappear”
– and then go ahead and perform the trick
right in front of our eyes. The act can be
repeated with silk handkerchiefs, coins,
chopping people in half, but whatever the
prop it basically involves doing something
seemingly impossible. Having captured the
attention of the audience, the conjurer then
elaborates on the original trick by doing
something to extend the theme and pushes
the envelope to a further level of disbelief.
This could involve removing the apparently
lost rabbit from inside someone’s hat, or
finding a missing object inside an impen-
etrable empty box that was locked at the
start of the act. The basic formula is to do
something that looks difficult, and then sur-
pass the act with a variant that uses the same
props yet seems more impossible, the goal
being to make the audience enthusiastically
clap while exclaiming to themselves, “I don’t
know how he did that, pure magic!”

The Technical Presentation
 At conferences the presenter typically
has one hour to win over the audience and
usually warms them up with a few jokes
before launching into demo number one.
This involves some kind of GUI appearing
from an IDE. It doesn’t really matter what
the GUI looks like at this stage or for that
matter what technology is being used, the
key thing is that a few lines of code can be
turned into a running GUI. There might be
some applause, but this is just in anticipation
of greater things to come. The presenter will
point out a few flaws in the GUI, return to
the IDE to make a couple of changes, push
the save button, and wait. It’s allowable for

the presenter to hit some kind of refresh but-
ton on the GUI to have the change reflected,
although more kudos is scored if this isn’t
necessary and the runtime update occurs
without any obvious intervention.
 Assuming nothing has crashed, the pre-
senter is in full stride and after a few slides to
tease and set the scene for the finale, a more
difficult and risky change is made to the
IDE code. It’s possible the GUI was based on
some kind of metadata such as a database
schema or WSDL file, in which case this
input definition will be swapped out. Doesn’t
really matter what rug is pulled, except that
for this feat the expectation is for something
more impressive than the first couple of acts.
After the presenter nervously pastes in some
magic line of code or takes a suspicious
menu option hastily added for the demo, the
original GUI is transformed. Like a frog turn-
ing into a princess, the GUI is more beautiful,
has more color, and possibly some sound is
played to hopefully send the audience into a
chorus of applause.

The Five-Ring Keynote
 In the late 1800s the troupe of Barnum &
Bailey improved on the art of previous circus
shows by having multiple acts simultaneous-
ly performing side by side in what became
known as the “three-ring circus.” Conference
keynotes now seem to recognize this as the
way to keep the show moving along. You
now find multiple back-to-back podiums
with different teams of engineers showboat-
ing their particular polemic using the same
code formula – execute, change, re-execute
with the GUI looking better, and so forth. To
accompany this, an emcee introduces the
engineer and adds narrative in the form of
rhetorical and rehearsed questions: “That’s
great Thor, but it looks pretty ordinary, what
can you do about that for us?” to which the
engineer is cued to add some magic lines of
code, too fast for the audience to see, ques-
tion, or even appreciate, as the end game is
just to refresh the GUI with gratuitous use
of color, animation, and, for bonus marks,
sound effects. After the applause the engi-
neer takes his seat and the next act is called
onto the stage.

–continued on page 34

From the Desktop Java Editor

Conference Presentations,
Magic Shows, and
the Five-Ring Circus

 Editorial Board
 Java EE Editor: Yakov Fain

 Desktop Java Editor: Joe Winchester

 Eclipse Editor: Bill Dudney

 Enterprise Editor: Ajit Sagar

 Java ME Editor: Michael Yuan

 Back Page Editor: Jason Bell

 Contributing Editor: Calvin Austin

 Contributing Editor: Rick Hightower

 Contributing Editor: Tilak Mitra

 Founding Editor: Sean Rhody

Production
 Associate Art Director: Tami Lima
 Executive Editor: Nancy Valentine
 Research Editor: Bahadir Karuv, PhD

To submit a proposal for an article, go to
http://jdj.sys-con.com/main/proposal.htm

Subscriptions
For subscriptions and requests for bulk orders, please send your

letters to Subscription Department:

888 303-5282
201 802-3012

 subscribe@sys-con.com

Cover Price: $5.99/issue. Domestic: $69.99/yr. (12 Issues)
Canada/Mexico: $99.99/yr. Overseas: $99.99/yr. (U.S. Banks or

Money Orders) Back Issues: $10/ea. International $15/ea.

Editorial Offices
SYS-CON Media, 577 Chestnut Ridge Rd., Woodcliff Lake, NJ 07677

Telephone: 201 802-3000 Fax: 201 782-9638

Java Developer’s Journal (ISSN#1087-6944) is published monthly

(12 times a year) for $69.99 by SYS-CON Publications, Inc.,
577 Chestnut Ridge Road, Woodcliff Lake, NJ 07677. Periodicals

postage rates are paid at Woodcliff Lake, NJ 07677 and additional
mailing offices. Postmaster: Send address changes to:
Java Developer’s Journal, SYS-CON Publications, Inc.,
577 Chestnut Ridge Road, Woodcliff Lake, NJ 07677.

©Copyright
Copyright © 2007 by SYS-CON Publications, Inc. All rights reserved. No

part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including

photocopy or any information storage and retrieval system, without
written permission. For promotional reprints, contact reprint

coordinator Megan Mussa, megan@sys-con.com. SYS-CON Media
and SYS-CON Publications, Inc., reserve the right to revise, republish
and authorize its readers to use the articles submitted for publication.

Worldwide Newsstand Distribution

Curtis Circulation Company, New Milford, NJ

For List Rental Information:

Kevin Collopy: 845 731-2684, kevin.collopy@edithroman.com

Frank Cipolla: 845 731-3832, frank.cipolla@epostdirect.com

Newsstand Distribution Consultant

Brian J. Gregory/Gregory Associates/W.R.D.S.

732 607-9941, BJGAssociates@cs.com

 Java and Java-based marks are trademarks or registered

trademarks of Sun Microsystems, Inc., in the United States and
other countries. SYS-CON Publications, Inc., is independent of
Sun Microsystems, Inc. All brand and product names used on
these pages are trade names, service marks or trademarks of

their respective companies.

Joe Winchester is a

software developer

working on WebSphere

development tools

for IBM in Hursley, UK.

joewinchester@sys-con.com

Joe Winchester

H

3June 2007JDJ.SYS-CON.com

Download a free copy of Perforce, no questions

asked, from www.perforce.com. Free technical support is

available throughout your evaluation.

Folder Diff is an interactive, side-by-side display for comparing the state

of any two groups of files.

Use Folder Diff to quickly determine the differences between files in

folders, branches, labels, or your local disk. This is especially useful

when performing complex code merges.

And when you’ve been working offline, Folder Diff makes it a snap to

reconcile and catch up with the Perforce Server when you get back online.

Folder Diff is just one of the many productivity tools that come with the

Perforce SCM System.

Introducing Folder Diff,
a productivity feature of Perforce SCM.

Perforce Folder Diff

Perforce Fast Software Configuration Management

5June 2007JDJ.SYS-CON.com

JUNE 2007 VOLUME:12 ISSUE:6

contents
JDJ Cover Story

JDJ (ISSN#1087-6944) is published monthly (12 times a year) for $69.99 by
SYS-CON Publications, Inc., 577 Chestnut Ridge Road, Woodcliff Lake, NJ 07677.
Periodicals postage rates are paid at Woodcliff Lake, NJ 07677 and additional
mailing offi ces. Postmaster: Send address changes to: JDJ, SYS-CON
Publications, Inc., 577 Chestnut Ridge Road, Woodcliff Lake, NJ 07677.

FROM THE EDITOR

Conference Presentations, Magic
Shows, and the Five-Ring Circus
by Joe Winchester.................................3

TESTING

Model-Based Testing for
Java Applications
A supplement to automated testing
by Bill Hayduk.................................6

ENTERPRISE

Spring and Java EE 5
Part 2: Simplicity and power combined
by Debu Panda..............................10

Q&A

The Evolution of Java
Interviews with Mike Milinkovich and Bill Roth
Interview by Joe Winchester..............................24

CASE STUDY

Securing Tomcat Database Passwords
How encrypting the username and password can be
implemented
by Michael J. Remijan..............................28

JSR WATCH

The JCP and the OpenJDK Community
by Onno Kluyt.............................34

p20
FROM THE EDITOR

p
by Murali Kashaboina
and Geeth Narayanan

Feature

 Java API for

XML Web Services
(JAX-WS)

by Deepak Vohra
and Ajay Vohra 14

JDJ.SYS-CON.com6 June 2007

oftware testing – whether it’s
automated, manual, or model-
based – is a systemic method of
discovering variances between

how a program was expected to perform
and how it actually behaves in use. Every
application should be tested to ensure it is
both usable and functional – that it doesn’t
contain bugs or flaws.
 Model-based testing has stirred up a
significant amount of interest over the
past couple of years. For some develop-
ment and testing teams it’s certainly a test
method worth exploring but be aware
that model-based testing may be a great
supplement to the automated testing you
already do, but it’s really an adjunct and
not a replacement for standard automated
testing.
 A properly constructed automated
software quality assurance
test aims to discover all of
the ways that every feature
in a piece of software can
be used, and how these
features will interact with
all other features, exposing
the flaws and bugs that lurk
in the programming code.
Standard tests accomplish
this by running a pre-de-
termined series of code
examinations. Model-based
testing, in contrast, uses
algorithms to determine all of the usage
paths for an application, pares down that
number for maximum coverage and mini-
mal testing, and then generates various
test cases to try the application against.
 Skilled software testers labor long hours
to figure out all of the possible ways a user
might interact with an application. But
users are almost guaranteed to surprise
programmers by figuring out some inno-
vative and exciting way to use a program,
ones cause results that may not have been
predictable to a logical mind.
 Model-based testing can be compared
to having many users, all of whom are
quite happy to test your application 24/7
for weeks on end, each one interact-
ing with the application in a distinctive
way. And because model-based testing
generates a broad sampling of test cases,

it avoids the fallacies that are potentially
inherent in repeating the same narrow run
of tests. This can generate a false sense of
security as subsequent runs will naturally
produce ever smaller numbers of found
flaws in programming code that may actu-
ally harbor serious problems. That’s why
model-based testing can sometimes catch
flaws that standard tests might miss.
 As we all know once you put an applica-
tion onto the Web, users will inevitably
be probing it for flaws or accidentally
stumble across whatever bugs managed
to evade your software testing process.
Spotting and correcting these problems
will save money, time, and aggravation.
Think of model-based testing as a good
way to broaden your quality assurance
procedures.

Inherent Issues Concerning
Model-Based Testing
 Before you even begin to
seriously consider bringing
model-based testing into
your development process
it’s important to note that
this testing method does
not suit every application or
organization’s needs.
 As we’ve discussed, model-
based testing examines an
application’s actual behavior
in response to actions. These

actions are generated from inputs created
specifically for the application that is un-
dergoing testing. To develop the inputs that
the tool will use to generate test cases we
have to understand, in depth, exactly what
the application that we’re testing should
optimally do, how it should respond to its
users, and perhaps how it should interact
with other applications. We then need to
clearly describe that expected behavior
to the testing tool. The process of creating
inputs for the testing tool is a highly critical
process, since all the results that follow will
necessarily be based on those inputs. If the
inputs are imperfect, if they don’t follow the
proper syntax (and so aren’t properly pro-
cessed by the tool) or are incomplete, then
your testing process will be flawed.

–continued on page 32

Testing

Model-Based Testing for Java Applications

S

Bill Hayduk is founder,

president, and director of

professional services at

RTTS (www.rtts.com). Over

the past 15 years, Bill has

successfully implemented

large-scale automation

projects at many Fortune

500 firms. He has managed

projects in most verticals,

including banking, broker-

age, multimedia, ISVs,

government, telecom-

munications, healthcare,

education, pharmaceutical,

and insurance.

bhayduk@rttsweb.com

President and CEO:

 Fuat Kircaali fuat@sys-con.com

President and COO:

 Carmen Gonzalez carmen@sys-con.com

Group Publisher:

 Roger Strukhoff roger@sys-con.com

Advertising

Advertising Sales Director:

 Megan Mussa megan@sys-con.com

Associate Sales Manager:

Corinna Melcon corinna@sys-con.com

Events

Events Manager:

Lauren Orsi lauren@sys-con.com

Events Associate:

Sharmonique Shade sharmonique@sys-con.com

Editorial
Executive Editor:

 Nancy Valentine nancy@sys-con.com

Production

Lead Designer:

 Tami Lima tami@sys-con.com

Art Director:

 Alex Botero alex@sys-con.com

Associate Art Directors:

 Abraham Addo abraham@sys-con.com

 Louis F. Cuffari louis@sys-con.com

Web Services

Vice President, Information Systems:

 Bruno Decaudin bruno@sys-con.com

Information Systems Consultant:

 Robert Diamond robert@sys-con.com

Web Designers:

 Stephen Kilmurray stephen@sys-con.com

 Richard Walter richard@sys-con.com

Accounting
Financial Analyst:

 Joan LaRose joan@sys-con.com

Accounts Payable:

 Betty White betty@sys-con.com

Customer Relations
Circulation Service Coordinator:

 Edna Earle Russell edna@sys-con.com

 Alicia Nolan alicia@sys-con.com

by Bill HaydukA supplement to automated testing

C
opyright 1996-2007 Infragistics, Inc. A

ll rights reserved. Infragistics, N
etA

dvantage and the Infragistics logo are registered
tradem

arks of Infragistics, Inc. W
ebC

hart and W
ebG

rid are tradem
arks of Infragistics, Inc. A

ll other tradem
arks or registered

tradem
arks are the respective property of their ow

ners.

WebCharting – Add high impact 2D/3D visualizations with over 20 different
chart types and views

Improved Data Reporting – Easily export data within a grid to any application
that supports the import of CSV such as spreadsheets and databases

Application Performance – Leverage our AJAX framework to turbo-charge
your Web applications

Accessibility – Support of US Code Section 508 across all Infragistics controls

NetAdvantage® for JSF
2007 Volume 1

Consistent Multi-Platform User Experience

learn more: infragistics.com/jsf

WebChart™ - 3D Overlay Donut Chart

WebGrid™ Export to CSV Format

Infragistics Sales - 800 231 8588

Infragistics Europe Sales - +44 (0) 800 298 9055

grids scheduling charting toolbars navigation menus listbars trees tabs explorer bars editors

WINDOWS® FORMS ASP.NET WPF JSF

NAforJSF_07vol1_JDJ_single-June.qxp 5/10/2007 3:16 PM Page 1

C
opyright 1996-2007 Infragistics, Inc. A

ll rights reserved. Infragistics, N
etA

dvantage and the Infragistics logo are registered
tradem

arks of Infragistics, Inc. W
ebC

hart and W
ebG

rid are tradem
arks of Infragistics, Inc. A

ll other tradem
arks or registered

tradem
arks are the respective property of their ow

ners.

WebCharting – Add high impact 2D/3D visualizations with over 70 different
chart types and views

Improved Data Reporting – Easily export data within a grid to any application
that supports the import of CSV such as spreadsheets and databases

Application Performance – Leverage our AJAX framework to turbo-charge
your Web applications

Accessibility – Support of US Code Section 508 across all Infragistics controls

NetAdvantage® for JSF
2007 Volume 1

Consistent Multi-Platform User Experience

learn more: infragistics.com/jsf

WebChart™ - 3D Overlay Donut Chart

WebGrid™ Export to CSV Format

Infragistics Sales - 800 231 8588

Infragistics Europe Sales - +44 (0) 800 298 9055

grids scheduling charting toolbars navigation menus listbars trees tabs explorer bars editors

WINDOWS® FORMS ASP.NET WPF JSF

NAforJSF_07vol1_JDJ_single-May.qxp 4/19/2007 12:04 PM Page 1

20

Client: Business Objects
Docket: 47-8002V
Project: Java Developers Journal DPS Ad
Trim Size: 16.75" x 10.75
File: 47-8002V_JavaDevJournalDPSAd.indd

CMYK CONTACT
Sarah Davids or Amberlea Fuller
1085 Homer Street
Vancouver, BC
V6B 1J4
Phone: (604) 669-2727

$99
UPGRADE
$395 NEW

oror

NOW

RARE OCCURRENCE.
For a limited time, upgrade to Crystal Reports® XI for only $99. Create brilliant reports in minutes and speed report integration so you can
focus on what you do best — core application coding. A great price with this depth of features is a rare occurrence, indeed.

Act fast. Go to www.businessobjects.com/rareoccurrence or call 1-888-333-6007 today.

• .NET, Java™ and COM SDKs
• Unlimited free runtime for internal corporate use
• Includes Crystal Reports Server – embed report management services

• Includes crystalreports.com — share reports over the web
• Unlimited installation-related support

© 2007 Business Objects. All rights reserved. Business Objects and the Business Objects logo, Business Objects and Crystal Reports are trademarks or registered trademarks of Business Objects in the United States and/or other countries. All other names mentioned herein may be trademarks of their respective owners.

Client: Business Objects
Docket: 47-8002V
Project: Java Developers Journal DPS Ad
Trim Size: 16.75" x 10.75
File: 47-8002V_JavaDevJournalDPSAd.indd

CMYK CONTACT
Sarah Davids or Amberlea Fuller
1085 Homer Street
Vancouver, BC
V6B 1J4
Phone: (604) 669-2727

$99
UPGRADE
$395 NEW

oror

NOW

RARE OCCURRENCE.
For a limited time, upgrade to Crystal Reports® XI for only $99. Create brilliant reports in minutes and speed report integration so you can
focus on what you do best — core application coding. A great price with this depth of features is a rare occurrence, indeed.

Act fast. Go to www.businessobjects.com/rareoccurrence or call 1-888-333-6007 today.

• .NET, Java™ and COM SDKs
• Unlimited free runtime for internal corporate use
• Includes Crystal Reports Server – embed report management services

• Includes crystalreports.com — share reports over the web
• Unlimited installation-related support

© 2007 Business Objects. All rights reserved. Business Objects and the Business Objects logo, Business Objects and Crystal Reports are trademarks or registered trademarks of Business Objects in the United States and/or other countries. All other names mentioned herein may be trademarks of their respective owners.

JDJ.SYS-CON.com10 June 2007

n the first part of this article you
learned how Java EE 5 has simplified
enterprise application development
by adopting a POJO programming

model and making use of Java 5 meta-
data annotations. You also discovered
how the Spring Framework version 2.0
integrates with Java Persistence API (JPA)
and makes it simple to use from enter-
prise Java applications.
 In this second part, you will learn how
you can integrate the Spring Framework
with EJB 3 components and to exploit
Spring’s declarative transaction features
with Java EE applications. Finally we’ll
discover how Java EE application servers
provide seamless management of Spring
components from their JMX-enabled
management consoles.

Using Spring and EJB 3
 As we discussed in Part 1 of this article,
EJB 3 greatly simplifies development
of EJB components. Spring’s Pitchfork
project implements part of the EJB 3
specification, for example, enabling use
of @Stateless or @Resource annotations
with Spring beans. It also lets develop-
ers use @Stateless annotations in a web
container.
 You can mix and match EJB 3 and
Spring components to leverage the power
of both frameworks. For example, you can
combine such features as statefulness,
pooling, clustering, declarative security,
Web Service feature, and message-driven
beans of EJB 3 with AOP, POJO injection ,
template-based data, and resource access
support provided by Spring.

Injecting Session Beans
 You may remember from our earlier
discussion that Java EE 5 lacks support
for POJO injection. If you want to use an
EJB from a helper class of your Web or
EJB module then injection isn’t supported
and unfortunately you have to resort to
JNDI lookup. Note that application server
vendors will provide proprietary exten-
sions to support POJO injection.
 However you can use Spring to
simplify and use its powerful depen-

dency injection mechanism to inject
an instance of a session bean. This will
help your applications to port between
application servers. Let us dive down and
see an example.
 The code examples that follow are
taken from my recently published book,
EJB 3 in Action, published by Manning
Publications.
 Assume that you have a session bean
named ItemManager that you will use
in the ItemServiceBean, which is a
Spring POJO, as shown below:

public class ItemServiceBean implements

ItemService {

 private ItemManager itemManager;

 public ItemServiceBean() {

 }

 // Setter injection of ItemManagerEJB

 public void setItemManager(ItemManager

 itemManager) {

 this.itemManager = itemManager;

 }

 public Long addItem(String title, String

 description,

 Double initialPrice, String sellerId) {

 Item item = itemManager.addItem(title,

 description,

 initialPrice, sellerId);

 return item.getItemId();

 }

}

 As you can see, we are using setter
injection to inject an instance of Item-
Manager EJB object and invoke a method
on the EJB.
 By now you must be wondering where
the actual magic happens? We’re not
doing a JNDI lookup and not using the
@EJB injection (that we discussed in Part
1) to inject the session bean object. The
real magic occurs through wiring in the
EJB through the Spring configuration.
 Let’s assume that the Spring Bean
uses a remote business interface of
ItemManager EJB and retrieves it
using a Spring 2.0 simplified jee-jndi

lookup as follows:

<jee:jndi-lookup id = “itemManager” jndi-

name = “ejb/ItemManager”

resource-ref = “true”/>

 Note that we are using setter injection
in ItemServiceBean to inject an instance
of ItemManager EJB and we must wire
the ItemManager EJB as follows:

<bean id = “itemService”

 class = “actionbazaar.buslogic.

ItemServiceBean”>

 <property name = “itemManager” ref =

“itemManager”/>

</bean>

 Remember from our discussion in part
1 of the article that EJB 3 Session beans
are POJOs and interfaces are POJI. So
there’s no difference between invoking
EJB3 session beans with either a remote
or local interface if your Spring beans and
EJBs are collocated in the same container,
and the configuration is identical for both
local and remote session beans. If your
Session bean is in a remote container
you’ll have to provide the JNDI properties
such has provider URL, principal, and
credentials to invoke the remote bean.

Spring-Enabled Session beans
 We ‘ll examine another interesting case
of integration where you can leverage
the power of Spring in an EJB 3-based
application. You can use Spring in your
session beans (both stateless and state-
ful) and message-driven beans (MDB).
I’ll demonstrate the use of Spring beans
from an EJB 3 stateless session bean. If
you’ve used Spring with EJB 2 you may
remember that the framework provides
several factory classes for such integra-
tion. You can use those abstract classes
with EJB 3 session beans to enable access
to the Spring bean factory. As these fac-
tory classes require they have to imple-
ment the onEjbCreate() method in your
EJB 3 bean class to access a Spring bean.
 Below is the same EJB 3 example (Pla-
ceBid EJB) transformed into a Spring-

Enterprise

by Debu Panda

Spring and Java EE 5

I
Part 2: Simplicity and power combined

Debu Panda, lead author of

the recently published EJB 3

in Action (Manning Publica-

tions), is a senior principal

product manager on the

Oracle Application Server

development team. He

maintains an active blog on

enterprise Java at http://

debupanda.com.

debabrata.panda@oracle.com

11June 2007JDJ.SYS-CON.com

enabled stateless session bean. Here
the PlaceBid EJB acts as a façade and
delegates the actual business logic to the
PlaceBidServiceBean.

@Stateless(name = “PlaceBid”)

public class PlaceBidBean extends AbstractS

tatelessSessionBean

implements PlaceBid {

 private BidServiceBean bidService;

 public PlaceBidBean() {

 }

 protected void onEjbCreate() {

 bidService =

 (BidServiceBean) getBeanFactory().

 getBean(“bidService”);

 }

 public Long addBid(String userId, Long

 itemId, Double bidPrice) {

 return bidService.addBid(userId,

 itemId, bidPrice);

 }

}

 Now let’s explore how the Spring bean
factory is created and how the Spring
configuration is provided.
 When an EJB instance is created (when
a client invokes an EJB), the onEjbCreate
method is invoked automatically. A JNDI
lookup is done to obtain the path for the
bean factory by using an environment
entry named ejb/BeanFactoryPath. So
you have to define it in the EJB deploy-
ment descriptor for the EJB:

<session>

 <display-name>PlaceBid</display-name>

 <ejb-name>PlaceBid</ejb-name>

 <env-entry>

 <env-entry-name>ejb/BeanFactoryPath</

 env-entry-name>

 <env-entry-type>java.lang.String</env-

 entry-type>

 <env-entry-value>/actionBazaar-service.

 xml</env-entry-value>

 </env-entry>

</session>

 Although EJB 3 made deployment
descriptor optional there are a few cases

where you still have to use it. If you’re a
heavy Spring user you live and breath
XML configurations so you have nothing
to complain about! In our example we’ve
set the env-entry-value for the ejb/Bean-
FactoryPath environment variable at /
actionBazaar-service.xml. So you have to
package the EJB classes, Spring classes,
and Spring configuration file into your
ejb-jar package.
 This way you can use the declara-
tive security, transaction, remote-
ability, and Web Service features of
EJB and combine that with POJO
injection, AOP, simplified data, and
resource access of Spring. Next we’ll
see a powerful combination of MDB
and Spring JmsTemplate.

JmsTemplate and
Message-Driven Beans
 Message-driven Beans are simple to
develop and can be configured as a mes-
sage consumer. MDBs support several
performance features such as pooling
and may either be used with a JMS-com-
pliant provider or an EIS using a JCA 1.5-
compliant connector. Below is a simple
MDB configured against a JMS provider.

@MessageDriven(activationConfig = {

 @ActivationConfigProperty(propert

yName =

“destinationName”, propertyValue =

“jms/OrderBillingQueue”),

 @ActivationConfigProperty

 (propertyName =

 “destinationType”,

 propertyValue =

 “javax.jms.Queue”) })

public class OrderBillingMDB implements

MessageListener {

 public void onMessage(Message

 message) {

 }

 Building JMS producer with Java EE
5 is still a pretty complex task in spite
of its injection support. Spring makes
building a message producer appli-
cation very simple as evident in the
following code:

public void sendMessage() {

 try {

 ..

 JMSSender jmsSender =

 (JMSSender)appContext.getBean(“jmsSender”);

 jmsSender.sendMesage();

 } catch(Exception e) {

 e.printStackTrace();

 }

}

 Looks pretty simple! You must be
wondering: what is the connection
factory and destination configured
that this client is sending a message to?
The magic is done in background by
the Spring configuration as specified
below:

<bean id=”connectionFactory”>

 class=”org.springframework.jndi.Jndi

 ObjectFactoryBean”>

 <property name=”jndiName”>

 <value>jms/QueueConnectionFactory</

 value>

 </property>

</bean>

 <bean id=”jmsDestination”

 class=”org.springframework.jndi.

JndiObjectFactoryBean”>

 <property name=”jndiName”>

 <value>jms/OrderBillingQueue</value>

 </property>

</bean>

 <bean id=”jmsTemplate”

 class=”org.springframework.jms.core.

JmsTemplate102”>

 <property name=”connectionFactory”>

 <ref bean=”connectionFactory”/>

 </property>

 <property name=”defaultDestination”>

 <ref bean=”jmsDestination”/>

 </property>

</bean>

<bean id=”jmsSender” class=”oracle.fusion.

 demo.OrderService”>

 <property name=”jmsTemplate”>

 <ref bean=”jmsTemplate”/>

 </property>

</bean>

The real magic occurs through wiring in the EJB
through the Spring configuration”“

JDJ.SYS-CON.com12 June 2007

 If you look at this code, the JMS
producer code is very simple, however,
you have to write quite a bit of XML
configuration. It’s your choice!
 While building enterprise applica-
tions you probably want your business
operations to be transactional. Next
we’ll see how you can use Spring de-
clarative transactions and how Java EE
containers provide the integration of
Spring with their Transaction Manager.

Spring-Declarative TX and Integration
with Application Server TM
 Java EE provides a robust platform
for building and deploying a trans-
actional enterprise application. Java
EE supports both programmatic and
declarative transactions and unfortu-
nately you can use declarative transac-
tions only with EJB. Spring has robust
support for declarative transactions
and you can use the scheme with any
POJO, adding declarative transaction
capability to the Web container.
 Let’s assume that you want to define
a declarative transaction for a method
in a Spring bean. You have the following
code:

@Transactional(propagation = Propagation.

REQUIRES_NEW, isolation = Isolation.READ_

COMMITTED)

public Long addBid(Bid bid) {

..

}

 When the addBid() method is in-
voked, Spring will automatically start
a new transaction per our definition.
The integration between Spring and
the application server’s transaction
manager is what makes that possible.
 Java EE containers such as Oracle
Containers for Java EE (OC4J) provide
integration between the transaction
manager and Spring so that declarative
transactions can be used. You can enable
such integration with a simple setting:

!-- enable the configuration of transac-

tional behavior based on annotations -->

<tx:annotation-driven/>

<bean id=”transactionManager” class=”org.

springframework.transaction.jta.OC4JJtaTrans

actionManager”>

The Manageability of
Spring Components
 While Spring components are easier
to build and deploy in an applica-
tion server, managing them may pose
maintainability issues since Spring is a
“foreign” framework. Application serv-

ers such as Oracle Application Server
address this with interesting integra-
tion for managing Spring components.
 For example, a Spring bean can be ex-
posed in the MBean browser of Oracle’s
Application Server Control by making
some minimal configuration changes in
the Spring application context configura-
tion. For example, we can register the
Spring beans with the following Spring
configuration:

<bean id=”howToMBeanServer” class=”org.

springframework.jmx.support.

MBeanServerFactoryBean”>

 <property name=”defaultDomain”

value=”SpringHowTo” />

</bean>

<bean id=”exporter” class=”org.springframe-

work.jmx.export.MBeanExporter”>

 <property name=”beans”>

 <map>

 <entry key=”bean:name=empService”

value-ref=”empService” />

 <entry key=”bean:name=employeeDAO”

value-ref=”employeeDAO” />

 </map>

 </property>

 <property name=”server”

ref=”howToMBeanServer” />

</bean>

 The Spring beans appear as applica-
tion-defined Managed Beans (MBean) in
the MBean browser of application server’s
management console. e.g., OracleAppli-
cation Server Control’s MBean browser as
shown in Figure 1. Thus managing Spring
components is a snap!
 You can perform MBean operations
on the Spring beans deployed as a part
of your application

Conclusion
 This concludes the second install-
ment of the two-part article. In this
article, we provided a series of examples
to illustrate how Java EE 5 developers
can exploit some common integration
points with the Spring Framework. Spe-
cifically, we demonstrated how EJB 3.0
and JPA combine naturally with Spring,
as well as demonstrated how Spring-
based applications can utilize high-end
Java EE container services such as
database access and the JMS messaging
infrastructure. Finally you learned how
application servers provide manage-
ment capability for Spring beans.

Enterprise

 Figure 1 Oracle application server control

JDJ.SYS-CON.com14 June 2007

ebLogic Server 10 Technology Preview sup-
ports JEE 5. A feature of JEE 5 is the Java
API for XML Web Services (JAX-WS) used to
create Web Services and Web Service clients.
WebLogic Server 10 provides the jwsc task to

create the Web Service artifacts and the clientgen task to
create the artifacts for Web Service clients. In this article
we’ll create an example JAX-WS 2.0 Web Service in WebLogic
Server 10 Technology Preview.
 JAX-WS is an API to create Web applications and Web
Services using the XML-based Web Services functionality. To
create a Web Service first create a Service Endpoint Imple-
mentation (SEI) class. The implementation class is anno-
tated with javax.jws.WebService annotation. The implemen-
tation class must not be abstract or final, and must contain
a default public constructor.
 A Web Service provides operations that are made
available to Web Service clients. So add business methods
to the Web Service class. The business methods are public
and must not be static or final and may be annotated
with the javax.jws.WebMethod annotation. By default
all public methods are made available as Web Service
operations.

Preliminary Setup
 Download and install the WebLogic Server 10 Techni-
cal Preview. Download and install Apache Ant, which is
required to run Ant tasks to create Web Service and client
classes. Download and install JDK 5 if not already installed.
It’s required to run Apache Ant.
 Using the WebLogic server Configuration Wizard create a
WebLogic domain, base_domain.

Creating a Web Service
 We’ll create a JAX-WS 2.0 Web Service. First, set the We-
bLogic server environment by running the setDomainEnv
command script.

C:\BEA\user_projects\domains\base_domain\bin> setDomainEnv

 Next, create a project directory in the C:\BEA\user_proj-
ects directory with the mkdir command. The directory
names should be separated with backslashes instead of
forward slashes for the mkdir command to run.

C:\BEA\user_projects> mkdir webservices\hello_webservice

 Create an src directory under the project directory that
contains subdirectories corresponding to the package name
of the Java Web Service class.

C:\BEA\user_projects\webservices\hello_webservice>mkdir src\webser-

vices\hello_webservice

 Create a Java Web Service (JWS) file for implementing a
JAX-WS Web Service. Annotate the Web Service implemen-
tation class HelloWsImpl with the @WebService annota-
tion. JSR 181: Web Services Metadata for the Java Platform
defines the standard annotations that can be used in a Java
Web Service. The javax.jws.WebService annotation specifies
that a class implements a Web Service. The attributes that
may be specified in the javax.jws.WebService annotation are
discussed in Table 1. All of them are optional.
 Add a Web Service method that returns a Hello message.
By default all public methods are exposed as Web Service
operations. Web Service methods may be annotated with
the @WebMethod annotation. Attributes operationName
and action may be specified in the WebMethod annotation.
The operationName attribute specifies the name of the
operation as mapped to the wsdl:operation element in the
WSDL. Default value is the method name. For SOAP bind-
ings, the action attribute maps to the SoapAction header in
the SOAP messages.

Deepak Vohra is a

Sun Certifi ed Java 1.4

Programmer and a

Web developer.

dvohra09@yahoo.com

by Deepak Vohra and Ajay Vohra

W

Creating a JAX-WS 2.0 Web Service in WebLogic Server 10

Feature

Creating a JAX-WS 2.0 Web Service in WebLogic Server 10

 Java API for
XML Web Services (JAX-WS)

Ajay Vohra is a senior

solutions architect

with DataSynapse Inc.

ajay_vohra@yahoo.com Table 1 WebService Annotation Attributes

Attribute Description
name Specifies the name of the Web Service. Maps to the

 wsdl:portType element in the WSDL file. Default

 value is the unqualified name of the Web Service

 implementation class.

targetNamespace Specifies the XML namespace for the XML and

 WSDL elements generated from the Web Service.

serviceName Specifies the service name of the Web Service.

 Maps to the wsdl:service element of the WSDL file.

 Default value is the Web Service implementation

 class name appended with “Service.”

wsdlLocation Specifies URL of a WSDL file. If specified a WSDL

 isn’t generated for the Web Service.

endpointInterface Specifies a service endpoint interface class.

15June 2007JDJ.SYS-CON.com

 The HelloWsImpl Web Service implementation class is listed
below.

package webservices.hello_webservice;

import javax.jws.WebService;

@WebService()

public class HelloWsImpl {

 public String hello(String name) {

 return «Hello «+name +» Welcome to Web Services!»;

 }

}

 Copy the HelloWsImpl.java class to the C:\BEA\user_
projects\webservices\hello_webservice\src\webservices\
hello_webservice directory.
 WebLogic Server 10 provides WebLogic Web Services Ant
tasks to create Web Services and client classes. The jwsc
Ant task takes an annotated JWS file as input and generates
all the artifacts required to create a WebLogic Web Service.
The generated files include the following.
1. Java Source files that implement a standard JSR-921 Web

Service, such as the Service Endpoint Interface (SEI). For
a JWS class HelloWsImpl an SEI HelloWsImplPortType.
java gets created.

2. Standard and WebLogic-specific deployment descrip-
tors. The standard webservices.xml deployment descrip-
tor and the JAX-RPC mapping files get created. The
WebLogic-specific Web Services deployment descriptor
weblogic-webservices.xml also gets created.

3. The WSDL file that describes the Web Service.
4. The XML Schema representation of any Java user-

defined types used as parameters or return values of
Web Service methods.

 A jws sub-element of the jwsc element specifies a JWS
file. By default jwsc generates a JAX-RPC 1.1 Web Service.
To generate a JAX-WS 2.0 Web Service specify the type at-
tribute of the jws element as type=”JAXWS”.
 Subsequent to generating the Web Service artifacts, jwsc
compiles the JWS and Java files and packages the generated
artifacts and classes into a Web application WAR file. Jwsc also
creates an enterprise application directory structure. The Web
Service may be deployed as a WAR file or packaged into an
EAR file and deployed. Jwsc generates a WAR file correspond-
ing to each jws element that’s a direct sub-element of the jwsc
element. JWS files may be grouped by adding the jws elements
to a module element, which is a direct sub-element of the jwsc
element. If a module element is specified only one WAR file
is generated.

 In addition to the standard attributes some WebLogic
specific attributes may be specified in the jwsc ant task.
Only the srcdir and destdir attributes are required. The
WebLogic specific jwsc attributes are discussed in Table 2.
 A jws element specifies a JWS file to compile. A jws ele-
ment may be specified as a direct sub-element of the jwsc
element or be included in a module element, which is a
direct sub-element of the jwsc element. The only required
attribute of the jws element is file, which specifies the JWS
file. Some of the other attributes that may be specified in
the jws element are discussed in Table 3.
 Next, create a build.xml file to generate the artifacts for
a Web Service from the example JWS file. To the build.xml
file add a taskdef element for the jwsc task that specifies
the class for the jwsc task. Add a target to build the Web
Service. Specify a jwsc task with srcdir as src and destdir
as output/HelloWsEar. Using a jws element specify the

 Table 2 WebLogic-specific jwsc Attributes

Attribute Description
applicationXml Specifies the name and path of the application.xml deployment

 descriptor. If the file already exists, the file is updated with Web

 Services. Jwsc also creates or updates the corresponding weblogic-

 application.xml file. By default jwsc creates or updates the META-

 INF/application file in the directory specified by destdir.

destdir Specifies the output directory in which the Web Service artifacts are

 generated.

destEncoding Specifies the character encoding of the output files, XML files, and

 deployment descriptors. Default encoding is UTF-8.

dotNetStyle Specifies that the jwsc task generate a .NET-style Web Service.

 Applies to JAX-RPC Web Services.

keepGenerated Specifies if artifacts be regenerated if previously generated. The

 default value is no, which implies that the artifacts be regenerated

 and the previously generated artifacts aren’t kept.

sourcepath Specifies the pathname of the top-level directory that contains Java

 files referenced by the JWS file/s.

srcdir Specifies the top-level directory containing the JWS file. The srcdir

 directory contains sub-directories corresponding to the JWS file

 package name.

srcEncoding Specifies the character encoding of the input files. The default value

 is the character encoding set by the jvm.

 Table 3 jws Attributes

Attribute Description
contextPath Specifies the context root of the Web Service. The default value is

 the same as the JWS file name.

file Specifies the JWS file to compile. The JWS file is looked for in the

 srcdir directory.

name Specifies the name of the WAR file including the .war extension. The

 default value is the JWS file name.

type Specifies the type of Web Service. Valid values are JAXWS and

 JAXRPC. The default value is JAXRPC.

wsdlOnly Specifies that only WSDL be generated. Applies only if jws is a direct

 sub-element of the jwsc element. The default value is false.

JAX-WS is an API to create Web applications and
Web Services using the XML-based Web Services functionality”“

JDJ.SYS-CON.com16 June 2007

JWS file to be compiled. Specify the type attribute of the jws
element as JAXWS as the Web Service is a JAX-WS 2.0 Web
Service. The build.xml file is listed below.

<project name=”webservices-hello” default=”all”>

 <taskdef name=”jwsc” classname=”weblogic.wsee.tools.anttasks.

JwscTask” />

 <target name=”build-service”> <jwsc srcdir=”src”

 destdir=”output/HelloWsEar”>

 <jws file=”webservices/hello_webservice/HelloWsImpl.java”

type=”JAXWS” />

</jwsc></target></project>

 Next, we shall run the build-service target to generate the Web
Service artifacts. Run the build-service target with the following
command.

C:\BEA\user_projects\webservices\hello_webservice>ant build-service

 The artifacts for a Web Service get generated and pack-
aged into a WAR file HelloWsImpl.war in the directory C:\
BEA\user_projects\webservices\hello_webservice\output\
HelloWsEar\webservices\hello_webservice. An exploded
directory structure for an EAR application including the
application.xml and weblogic-application.xml also get
generated. The output from the ant command is shown
in Figure 1.

To deploy the Web Service copy the WAR file
HelloWsImpl.war to the C:\BEA\user_projects\domains\
base_domain\autodeploy directory. Start WebLogic with
the command script C:\BEA\user_projects\domains\base_
domain\bin\startWebLogic.
 When the Web application is deployed the applica-
tion server and the JAX-WS runtime generate the WSDL
file and any additional artifacts required to invoke
the Web Service from a client. The WSDL may be ac-
cessed with URL http://localhost:7001/HelloWsImpl/
HelloWsImplService?WSDL.

Creating a Client
 In this section we’ll create a JAX-RPC Java client for the Web
Service created in the previous section. We’ll use the clientgen
Ant task to generate the client component fi les. First, create a
project directory for the client application.

C:\BEA\user_projects> mkdir \webservices\simple_client

 Create an src directory under the project directory. The sub-
directories of the src directory should correspond to the package
name of the Java client class, which we’ll create next

C:\BEA\user_projects\webservices\simple_client> mkdir src\webservices\

jaxws\client

 Create a Java client application Main.java in package webser-
vices.jaxws.client. In the Java client application create an instance
of the HelloWsImplService service.

HelloWsImplService service = new HelloWsImplService();

 Obtain a proxy to the service from the service using the getHel-
loWsImplPort() method.

HelloWsImpl port = service.getHelloWsImplPort();

 Invoke the hello(String) method of the service.

result = port.hello(“Deepak”);

Feature

Figure 1 Output from the ant build-service Command

Subsequent to generating the Web Service artifacts, jwsc compiles
the JWS and Java files and packages the generated artifacts and

classes into a Web application WAR file”
“

 Figure 2

JDJ.SYS-CON.com18 June 2007

 The Java client application Main.java class is listed below.

package webservices.jaxws.client;

public class Main {

 public static void main(String[] args) {

 HelloWsImplService service = new HelloWsImplService();

 HelloWsImpl port = service.getHelloWsImplPort();

 String result = null; result = port.hello(“Deepak”);

 System.out.println(result);

 }

}

 Next, we’ll generate the client application artifacts re-
quired to invoke the Web Service using the clientgen task.
The clientgen task generates the following artifacts.
1. The client-side copy of the WSDL file.

2. The Java source code for the Stub and Service inter-
face implementations for the Web Service.

3. Java classes for any user-defined XML Schema data
types defined in the WSDL file.

4. JAX-RPC deployment descriptor that describes the
mapping between the Java data types and the corre-
sponding XML Schema types in the WSDL file.

 The only required attribute of the clientgen task is one
of destDir or destFile and wsdl. Some of the commonly
used attributes of the clientgen task are discussed in
Table 4.
 Create a build.xml file in the C:\BEA\user_projects\
webservices\simple_client directory. Specify the
class name for the clientgen task with the taskdef
element.

<taskdef name=”clientgen”

classname=”weblogic.wsee.tools.anttasks.ClientGenTask” />

 Add a target build-client to the build.xml file to
generate the client artifacts. Add a clientgen element
to the target element. Specify type as JAXWS, destDir as
output/clientclass, packageName as webservices.jaxws.
client, and wsdl as http://localhost:7001/HelloWsImpl/
HelloWsImplService?WSDL.

<clientgen type=”JAXWS”

wsdl=”http://localhost:7001/HelloWsImpl/HelloWsImplService?WSDL”

destDir=”output/clientclass” packageName=”webservices.jaxws.client”/>

 Add javac elements to the target element to com-
pile the client artifact Java classes and the Main.java
client Java application. The build.xml file is listed
below.

<project name=”webservices-simple_client” default=”all”> <taskdef

name=”clientgen”

classname=”weblogic.wsee.tools.anttasks.ClientGenTask” />

<target name=”build-client”> <clientgen type=”JAXWS”

wsdl=”http://localhost:7001/HelloWsImpl/HelloWsImplService?WSDL”

destDir=”output/clientclass” packageName=”webservices.jaxws.client”/>

<javac

srcdir=”output/clientclass” destdir=”output/clientclass”

includes=”**/*.java”/> <javac

srcdir=”src” destdir=”output/clientclass”

includes=”webservices/jaxws/client/*.java”/></target>

</project>

 Run the build-client target to generate the client artifacts
and compile the Java classes.

C:\BEA\user_projects\webservices\simple_client> ant build-client

Feature

 Table 4 clientgen Attributes

Attribute Description
destDir Specifies the directory in which clientgen generates the client

 application artifacts. Either destDir or destFile should be specified.

destFile Specifies JAR file or exploded directory in which clientgen generates

 the artifacts. Clientgen also compiles all Java classes.

failonerror Specifies whether clientgen should continue executing if an error

 occurs. The default value is True.

generateAsyncMethods Specifies if clientgen should include methods in the generated

 stubs that may be used to invoke the Web Service operations asyn-

 chronously. The default value is True.

packageName Package name into which the client interfaces and Stub files get

 generated. The default value is determined from the target-

 Namespace of the WSDL file.

serviceName Specifies the service name in the WSDL file for which client arti-

 facts get generated. Required if the WSDL file contains more than

 one <service> element. By default the only <service> element in the

 WSDL file is used.

type Specifies the type of Web Service JAX-RPC 1.1 or JAX-WS 2.0. Valid

 values are JAXRPC or JAXWS. The default value is JAXRPC.

wsdl Specifies the URL of the WSDL that describes the Web Service.

 Required attribute.

 Figure 3 The output from the build-client target

WebLogic Server 10 Technical Preview supports JEE 5
and the JAX-WS 2.0 Web Services”“

19June 2007JDJ.SYS-CON.com

 The client artifacts get generated and the Java classes
get compiled. The output from the build-client target is
shown in Figure 3.
 Next, add a target to the build.xml file to run the client
Java application Main.java. Add a target run. Also add a
path element to specify the classpath to run the Main.java
application. The classpath should include the output/cli-
entclass directory that contains the client artifacts and
the system property java.class.path. The modified build.
xml file is shown below.

<project name=”webservices-simple_client” default=”all”> <taskdef

name=”clientgen”

classname=”weblogic.wsee.tools.anttasks.ClientGenTask” />

<target name=”build-client”> <clientgen type=”JAXWS”

wsdl=”http://localhost:7001/HelloWsImpl/HelloWsImplService?WSDL”

destDir=”output/clientclass” packageName=”webservices.jaxws.client”/>

<javac

srcdir=”output/clientclass” destdir=”output/clientclass”

includes=”**/*.java”/> <javac

 srcdir=”src” destdir=”output/clientclass”

includes=”webservices/jaxws/client/*.java”/></target>

<path id=”client.class.path”>

<pathelement path=”output/clientclass”/> <pathelement

path=”${java.class.path}”/> </path> <target name=”run” >

<java fork=”true”

classname=”webservices.jaxws.client.Main”

 failonerror=”true” >

<classpath refid=”client.class.path”/> </java> </target>

</project>

 Next, run the target run.
 The Web Service operation hello() gets invoked with
a String argument and the result returned by the Web
Service gets output as shown in Figure 4.

Conclusion
 WebLogic Server 10 Technical Preview supports JEE 5
and the JAX-WS 2.0 Web Services. WebLogic server 10 also
provides Ant tasks jwsc and clientgen to generate the Web
Service artifacts and client artifacts.

 Figure 4 WSDL

JDJ.SYS-CON.com20 June 2007

aven is a promising application development
lifecycle management framework coming from
Apache’s armory of open source tools. Maven
was originally developed as a framework to

manage and mitigate the complexities of building the Jakarta
Turbine project and soon became a core entity of the Apache
Software Foundation project.
 Without a uniform application development lifecycle
management framework, different development teams
would create their own build frameworks with varying fl avors
and complexity and this tendency would only proliferate as
more and more new projects get developed. The creation
of different build approaches for different projects would
lead to build system disparity lacking reuse of build logic
that would impede developers in moving easily between the
projects because every time a developer starts working on a
different project, the developer would spend too much time
understanding the prevalent build system, its confi guration,
and usage instead of focusing on the core components.
 This type of perplexity was particularly felt in the open
source community. There was a defi nite need for a standard-
ized project development lifecycle management system. The
advent of Maven as part of the Jakarta Turbine project was
the perfect remedy for the old malady.
 As the name suggests, Maven is a connoisseur of build
process. It encapsulates years of project development lifecycle
management knowledge and tremendously simplifi es the build
process by extensively reusing build logic and eliminating most
of the grunt work typical of the usual application develop-
ment process. Ever since, Maven has been extensively used in
the open source community for building projects and in the
process was enhanced and extended to bring it to its current
mature state. Maven, currently at version 2, has become the de
facto build system in many open source initiatives and is being
adopted by many software development organizations.
 Development teams usually would have a plethora of
challenges and concerns during typical application project
development. The following are a few such examples:
• What should the project directory structure be?
• How should source, test source, libraries, configuration,

documentation, and report directories be laid out?
• Where should the dependent library Jars be downloaded

from?

• What versions of library Jars should be used for the project?
• What about the other Jars that the project library Jars

depend on internally? Where should such Jars be download-
ed from? What versions of such Jars should be used? Is there
an easy way to know the compatible versions?

• What is the best way to resolve dependent library Jar version
conflicts?

• Where should the library Jars be located?
• How should the project keep up with the latest versions of

dependent Jar files?
• How should the compile time, runtime, and testing time

classpath libraries be separated?
• How should compile time, runtime, and testing time

resources be separated?
• Is there an easy way to execute all test cases during the build

process and immediately evaluate percentage test coverage?
• Is there an easy way to test code quality during the build

process?
• Is there a way to integrate code profiling during the build

process?
• Is there a way to run integration tests during the build pro-

cess? How can continuous integration be achieved by devel-
oping custom build scripts?

• How should the build scripts be designed for different proj-
ect building tasks?

• Where should build scripts be located in the overall project
directory structure?

• Should there be a dedicated resource to maintain the build
scripts while the project is being developed?

• How can consistent company-wide Jar libraries be main-
tained?

• Should new team members learn the custom build process?
• Should each project have its own inconsistent and typically

non-standard build process?

 Maven thoroughly addresses such concerns by provid-
ing a common project build model that can be reused by
all software projects. Maven abstracts the project structure
and contents by following a set of guiding principles such
as “convention over confi guration,” “declarative execu-
tion of development lifecycle process,” “reuse of build
logic across projects,” and “logical organization of project
dependencies.”

Murali Kashaboina is a lead

architect at Ecommerce Tech-

nology, United Airlines, Inc. He

has more than 10 years of en-

terprise software development

experience utilizing a broad

range of technologies, includ-

ing JEE, CORBA, Tuxedo, and

Web services. Murali previously

published articles in WLDJ and

SilverStream Developer Center.

He has master’s degree in me-

chanical engineering from the

University of Dayton, Ohio.

murali.kashaboina@united.com

by Murali Kashaboina and
Geeth Narayanan

M

Introduction to Maven 2
A promising application development lifecycle management framework

Feature

21June 2007JDJ.SYS-CON.com

Introduction to Maven 2
 The key benefi t of this approach is that developers will
follow one consistent build lifecycle management process
without having to reinvent such processes time and again.
Ultimately this will make developers to become more
productive, agile, disciplined, and focused on the work at
hand rather than spending time and effort doing grunt work
understanding, developing, and confi guring yet another
non-standard build system.

Standard Conventions Used by Maven
 Maven goes by the notion of “convention over confi gura-
tion.” Some of the common concerns when building a project
are project directory structure, directory naming conventions,
and the build output. For example, the directory structure of a
Web application project will be slightly different from that of
an EJB application project. Similarly the output of a Web ap-
plication project is typically a WAR fi le while that of an EJB ap-
plication is a JAR fi le. However, for a specifi c project type, the
typical requirements in terms of directory layout and naming
conventions are almost the same. Without a unifi ed frame-
work such as Maven, developers would typically spend time
confi guring such nitty-gritty details as setting up directories
for source, resources, test case source, testing time resources,
classes, and project dependencies. Moreover, developers will
have to spend a good chunk of time creating build scripts such
as ANT scripts to execute build tasks according to the project
layout. This entire endeavor ends up being chaotic and in a
large-scale project it can lead to a maintenance nightmare
demanding dedicated resources just to focus on such build
aspects.
 Maven inculcates three main conventions to address
common concerns:
1. Projects of the same project type will have one com-

mon standard project directory structure: At project
creation, Maven uses a standard project directory layout
for source files, resources, test case source files, test
resources, configuration files, output files, reports, and
documentation. In almost all cases, this standard proj-
ect directory layout is sufficient to carry out develop-
ment tasks. However, a custom directory structure can
also be configured by overriding Maven’s defaults. This
override is not generally recommended unless there’s a
compelling reason and will deviate from Maven’s best
practice propositions.

2. Every project results in one primary artifact of specific
type: Every project in Maven will result in one primary
output file known as an artifact. For example, a Maven
project containing a mathematical utility API will
yield a JAR file containing compiled utility classes. The
output JAR file is the resulting artifact of that project.
Some other common artifact types are WAR, EAR, and
RAR. Each artifact in Maven is uniquely designated by
three Maven coordinates; artifact Id is the actual name
of the artifact, group Id is the name of the group the
artifact belongs to and the artifact version. This conven-
tion helps tremendously while resolving dependen-
cies because every dependency in Maven is an artifact
and so every dependency can be uniquely identified.
This convention enables developers to think in terms
of modularization at the code base level so that each
project module yields one specific artifact specializing
in one area of concern. This type of modularization
encourages maximum reusability with different projects

can now depend on only one functionally specialized
and distinct artifact without having to include mul-
tiple disparate artifacts that may contain pieces of the
required functionality.

3. Use of standard naming conventions: Maven uses standard
names for project directories and output files. For example,
Maven creates a standard ‘projectDirectory/src/main/java’
directory for all Java source files and ‘projectDirectory/src/
test/java’ directory for all Java test case source files. Similarly,
while creating a project artifact, Maven follows a standard
naming convention such as ‘artifactName-version.’ An arti-
fact version is typically represented in a standard format of
‘MMM.mmm.bbb-qqqqqqq-nn’ where ‘MMM’ is the major
version number, ‘mmm’ is the minor version number, ‘bbb’
is the bug fix number,’ ‘qqqqqqq’ is an optional qualifier, and
‘nn’ is an optional build number. Such naming conventions
offer immediate clarity and in the case of artifacts, enable
cohesive and consistent organization of dependencies using
their respective artifact coordinates.

Overview of the Maven 2 Working Model
 Apart from the standardization of project structure and
contents using conventions, Maven follows a set of in-built
core competencies in pursuit of simplifying the project
development build lifecycle.
• Definition of build lifecycle phases: At Maven’s core is the

definition of build lifecycle phases. It’s a fact that almost all
software projects follow a series of steps during software
building typically varying the number of steps and their
sequencing. Maven standardizes these steps in pre-defined
lifecycle phases and drives the build process through each
phase in a specific logical sequencing order. Each phase
can perform one or more actions or goals relevant to that
lifecycle phase. Figure 1 captures Maven’s phases and the
logical order in which they are invoked.

 The phase-specifi c actions and goals are accomplished
by confi guring Maven plug-ins. A Maven plug-in is a soft-
ware extension that can execute one or more tasks. Each
task is known as a Mojo and each Mojo tries to accomplish
a certain build goal as part of executing a specifi c task.

 Figure 1

Deploy

Install

Verify

Post Integration
Test

Integration
Test

Pre-Integration

Test

Pa
ck

ag
e

Te
st

Test Com
pile

Process TestResources
Generate Test

Resources

Pr
oc

es
s T

es
t

So
ur

ce
s

Generate Test

Sources

Process

Classes

Compile

Process

Resources

Ge
ne

ra
te

Re
so

ur
ce

s

ProcessSources

Ge
ne

rat
e

So
ur

ce
s

Initialize

Validate

built by:
 maven

Geeth Narayanan is

a senior architect at

Ecommerce Technol-

ogy, United Airlines,

Inc. He has 10 years

of experience in the IT

industry, specializing

in solutions using Java

EE technologies. Geeth

has master’s degree in

electrical engineering

from the University of

Toledo, Ohio.

geethakrishn.
narayanan@united.com

JDJ.SYS-CON.com22 June 2007

 For example, the JAR Mojo from Maven JAR plug-in creates a JAR
file during the packaging phase of the Maven build lifecycle. With
this kind of build choreography in place, different projects can take
advantage of different combinations of phases with appropriate plug-
ins bound to them to accomplish project specific build lifecycle.
• Declarative execution and Project Object Model: Everything

seems to be simplified using Maven because the Maven engine
is driven in a declarative fashion. Project-specific metadata is
declared in a descriptor file known as the Maven Project Object
Model a k a POM. The project’s POM file forms the cornerstone for
executing Maven’s build process. POM contains all the information
required about the project such as project packaging type, output
artifact coordinates, dependencies and dependency management
information, and plug-in configuration information. Listing 1 is a
sample POM file for a Maven project aimed at building a RAR file.

 The sample POM in Listing 1 is for a JCA RAR project that will
result in a 1.0 version of the JCA adapter. The sample POM states
that the JCA project is dependent on two other artifacts, ‘geronimo-
spec-j2ee-connector-1.0-M1.jar’ and ‘junit-3.8.1.jar.’ This POM also
configures two plug-ins, ‘maven-jar-plugin’ and ‘maven-rar-plugin,’
and binds them to the ‘package’ phase of the Maven build lifecycle.
 The sample POM in Listing 1 seems very simple in its configura-
tion because in principle Maven shields the actual project POM from
knowing all the other nitty-gritty default information by capturing
such information in a Super-POM. When executing the build cycle,
Maven implicitly associates the parent Super-POM with the project
POM and thereby aggregates the overall project information needed
to carry out the build process. Per se, every project POM has a parent
Super-POM and so the project POM inherits lot of default informa-
tion from the parent Super-POM. For more information on POM file
contents, see http://maven.apache.org/pom.html.
• Logical organization of dependencies and dynamic dependency

resolution: As shown in the sample POM, all project dependen-
cies and plug-ins are declared in the POM file. In the Maven
world, each dependency and each plug-in is an artifact that can
be uniquely identified using its coordinates namely group Id, arti-
fact Id, and version number. As far as developers are concerned,
their responsibility in terms of defining the project dependencies
ends with the declaration of the dependencies in the POM file.

Developers only deal with the declaration of
logical dependencies without either physi-
cally downloading the dependencies to the
project directory or setting the classpath to
point to some location where dependent
JARs are available. Everything else in terms
of resolving the dependencies and setting
dependent artifacts in the build classpath
is transparently handled by Maven using
its in-built dynamic dependency resolution
mechanisms.
 All artifacts are stored in Maven
repositories. There are two kinds of Maven
repositories – local and remote. Each reposi-
tory stores artifacts in a logical structure
using artifact coordinates. When Maven
is installed, a local repository is typically
created in the user home directory and is
located at ~/.m2/repository. Figure 2 is an
example local repository directory structure.

 In the local repository example, the dom4j artifact is stored in a
logical fashion using its group Id ‘dom4j’, artifact Id ‘dom4j,’ and ver-
sion number ‘1.6.1.’ In the dom4j/dom4j/1.6.1 directory, the actual
artifact JAR file along with Maven’s POM file is stored.
 The Maven 2 remote repository is located at http://repo1.maven.
org/maven2 and is a central repository for all kinds of open source
artifacts. There are some other World Wide Web-accessible reposi-
tories such as the Codehaus repository located at http://repository.
codehaus.org/ that contains artifacts for upcoming projects such as
JRuby. A development organization can have its own remote reposi-
tories located in the company’s intranet to store company-specific
project artifacts. Figure 3 shows the repository layout for the central
Maven repository.
 By default, Maven uses http://repo1.maven.org/maven2 as the
central remote repository at the time of dependency resolution.
However, for a given project, additional remote repositories can be
specified in the POM file as shown in Listing 2.
 At the time of the build process, Maven resolves the dependencies
specified in the POM file in the following order:
1. Maven checks if the dependency artifact is present in the local

repository using artifact coordinates. For example, the following
POM snippet includes version 1.6.1 of dom4j as a dependency. To
resolve this dependency, Maven will check if ‘~/.m2/repository/
dom4j/dom4j/1.6.1/dom4j-1.6.1.jar’ exists. Typically Maven will
look for the dependency in the local repository using the location
path built using the artifact coordinates – ‘~/.m2/repository/
groupId/artifactId/version/artifactId-version.extenstion’ where
the extension by default is ‘.jar’ unless the artifact type is speci-
fied in the dependency declaration using a ‘<type>’ element.

<dependency>

 <groupId>dom4j</groupId>

 <artifactId>dom4j</artifactId>

 <version>1.6.1</version>

 <scope>runtime</scope>

</dependency>

 If the group Id contains qualifiers separated by a period as in
a company domain, Maven will include the qualifiers in the loca-
tion path for the dependency artifact. For example, the location
path ‘~/.m2/repository/com/ibatis/ibatis-sqlmap/1.3.1/ ibatis-
sqlmap-1.3.1.jar’ will be used to check if version 1.3.1 of the ‘iba-
tis-sqlmap’ artifact that has a group id of ‘com.ibatis’ is present in
the local repository.

2. If a dependency artifact isn’t found in the local repository, Maven
will attempt to download the artifact from the remote repository
to the local repository. As in step 1, Maven will build the path using
the artifact coordinates and the URL for the remote repository. For
example, Maven will use the http://repo1.maven.org/maven2/
dom4j/dom4j/1.6.1/dom4j-1.6.1.jar URL path to download ver-
sion 1.6.1 of the dom4j artifact from the central Maven 2 artifact
repository. The remote lookup for the artifact will start with the first
configured remote repository in the POM. If the lookup fails with a
‘404 Not Found,’ Maven will search for the artifact in the next con-
figured remote repository. The purpose of downloading the arti-
facts to the local repository is to make the process more efficient
by not having to look up remotely time and again. Thus the local
repository acts as a local cache for all the artifacts and one place to
go to for all artifact shopping. Note that Maven will also download
other information such as the POM file for the dependency.

Feature

 Figure 2

23June 2007JDJ.SYS-CON.com

3. If the dependency can’t be resolved in any of the repositories,
Maven will error out the build process.

4. Once the dependency is resolved by downloading the artifact, if
necessary, Maven will include that artifact in one of the Maven
classpaths based on the scope of the artifact specified in the
dependency declaration in the POM.
a. compile: A compile-scope dependency is available in all phas-

es. This is the default value for a dependency.
b. provided: A provided dependency is needed at the time of

compiling the application but need not be part of the deploy-
ment because such a dependency may be made available by
other means during runtime such as an application server pro-
viding necessary container-specific classes etc.

c. runtime: A runtime-scope dependency isn’t needed for compi-
lation but is needed at the time of execution.

d. test: A test-scope dependency is needed for compiling and run-
ning test cases.

5. Once the primary dependency is resolved, Maven will attempt
to resolve all other artifacts that the primary dependency may
internally depend on. This is commonly referred to as Maven 2
transitive dependency resolution. To achieve this, Maven will read
the primary dependency’s POM file found in the local repository
alongside the artifact’s JAR file, identify its dependencies, and go
about resolving those dependencies using the same approach by
repeating the steps from #1.

Conclusion
 In Part 1 of this article, we introduced Maven through a quick tour
of some of its core internals without delving into details of how to

exercise Maven. We think that without understanding the basics first,
it will be hard to sail into the nitty-gritty practicalities. In Part 2, we will
get into the details of installing Maven, configuring the Maven plug-in
in Eclipse, and providing a practical example that illustrates how to
accomplish typical development tasks and how Maven simplifies the
process, making development much more productive.

 Figure 3

Listing 1
<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.somecompany.apapters</groupId>
 <artifactId>jcaAdapter</artifactId>
 <version>1.0</version>
 <packaging>rar</packaging>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>geronimo-spec</groupId>
 <artifactId>geronimo-spec-j2ee-
connector</artifactId>
 <version>1.0-M1</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>

<groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <executions>
 <execution>
 <id>jarCreation</id>
 <phase>package</phase>
 <goals>
 <goal>jar</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-rar-plugin</artifactId>

 <executions>
 <execution>
 <id>rarCreation</id>
 <phase>package</phase>
 <goals>

 <goal>rar</goal>
 </goals>
 <configuration>
 <includeJar>true</includeJar>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

Listing 2
<repositories>
 <repository>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <id>central</id>
 <name>Maven Central Repository</name>
 <url>http://repo1.maven.org/maven2</url>
 </repository>
 <repository>
 <id>codehaus </id>
 <name> Codehaus Maven Repository</name>
 <url>http://repository.codehaus.org/</url>
 </repository>
 <repository>
 <id>xyzCompany</id>
 <name>XYZ Company Maven Repository</name>
 <url>http://intranet.xyz.com/repository/</url>
 </repository>
</repositories>

JDJ.SYS-CON.com24 June 2007

Mike Milinkovich,
executive direc-
tor of the Eclipse
Foundation, has
been kind enough
to answer some
questions for Java
Developer’s Jour-
nal. Rather than

rattle off the usual ones about the
name, about why Swing wasn’t used,
or how much influence IBM still has,
Mike has fielded questions on some
more current and topical subjects, as
well as given us his insights onto the
future. Thanks for taking the time to
talk to us Mike.

JDJ: The Eclipse Foundation recently
joined the Java Community Process.
Can you tell us how this is going and
what you expect to get out of this, as
well as give to the JCP?
Mike Milinkovich: Yes, we recently
joined the JCP, as we also joined the
OSGi Alliance and OMG. The reason
for joining these organizations is that
the Eclipse community relies heavily
on the standards that are produced by
these standards organization, so we
wanted to show our support.
 As for the JCP specifically, we are
planning to contribute in a couple of
different areas, the most immediate
example being the use of the Eclipse
Equinox code as the reference imple-
mentation for JSR291.

JDJ: At this year’s EclipseCon I felt
that the amount of interest in RCP
had surpassed the amount of interest
in the actual IDE. Do you think this
is the case, and if so does this change

the dynamics of Eclipse’s strategy and
direction to become more of a general-
purpose application platform and less
of a development environment?
Milinkovich: Yes, I agree the Eclipse
community and the industry as a
whole has moved toward viewing
Eclipse as an application platform.
We are seeing a lot of interest and
adoption of RCP and also projects
such as Equinox, RAP, and Higgins.
However, this is not new as we have
had a conscious strategy to move
Eclipse beyond just being a Java IDE
for several years now. I believe what
we are seeing is quite simply that a
number of the newer projects within
the Eclipse community are becoming
more mature and are enjoying greater
interest and adoption as a result. The
vision for Eclipse has always been
about being a complete platform for
software development and I think we
are well on the way.
 However, I do continue to see a
lot of interest in Eclipse as a tools
platform. We have new projects for
providing IDEs for dynamic languages
such as Ruby and PHP. The AJAX
Toolkit Framework (ATF) is attracting
a lot of interest as a tooling platform
for AJAX developers. CDT, our C/C++
IDE, has great momentum as being
the C/C++ IDE for embedded and
Linux development. In my opinion,
Mylar is one of the most innovative
new developer technologies to come
about in a long time.
 Therefore, I don’t really see a large
change in strategy or direction; I see it
more as a journey and evolution. This
is what makes Eclipse such a vibrant
and interesting community.

JDJ: JSR 291 ratified the OSGi Java
module mechanism used by Eclipse
to become part of the Java language
specification. Can you see the same
occurring with SWT?
Milinkovich: I haven’t seen any inter-
est from the community in putting
SWT into the JCP process. It is not
that I don’t think it would be an inter-
esting idea but someone would have
to step up to spend the considerable
amount of time required to take it
through the process.

JDJ: How do you manage the relation-
ship between the Eclipse board mem-
bers, some of whom are fierce competi-
tors in the commercial marketplace,
yet need to collaborate for the good of
the platform?
Milinkovich: Interestingly, this has
been mostly a non-issue to date. I’ve
been really very happy with how col-
legial and effective the Board of the
Eclipse Foundation has been.
 That said, I think you have already
identified the answer; there is a
common need for a strong, stable
platform for building all sorts of dif-
ferent software. Eclipse is providing
this platform and it really becomes
a unifying force at the Board and
through-out the community. The
other thing is that the Eclipse
governance model is proving to be
very good at managing the different
interests that participate in Eclipse.
All the organizations have an equal
say at the
Board level and the principles of
meritocracy and transparency help
resolve a lot of the issues within
the projects.

Q&A

Interview by Joe Winchester

The Evolution of Java

Joe Winchester is

a software developer

working on WebSphere

development tools

for IBM in Hursley, UK.

joewinchester@sys-con.com

Interviews with Mike Milinkovich and Bill Roth

The vision for Eclipse has always been about being a
complete platform for software development and I think we are

well on the way”
“

–Mike Milinkovich

25June 2007JDJ.SYS-CON.com

JDJ: What excites you most about what is going on
with Eclipse at the moment?
Milinkovich: Europa, our next release, is going to
be pretty exciting. We have over 22 projects lined up
for the annual release train, so a lot of new stuff is
getting ready for release. Our annual release trains
are very important for the entire Eclipse community.
First of all, they are a real testament to the committer
and project community’s ability to deliver on a pre-
dictable schedule. Second, they are hugely important
to our adopter community as they use the projects
to deliver their commercial products or open source
projects.
 I think the growing involvement of Eclipse in the
world of Equinox-based OSGi runtimes – such as the
EclipseLink persistence project recently proposed by
Oracle – is cool as well. Over the next 12–18 months we
are going to see a lot of new stuff being built with Equi-
nox.

JDJ: What worries you most about what is going on with
Eclipse at the moment?
Milinkovich: I’m not sure that “worried” is the right word,
but I would like to see vertical market frameworks (e.g.,
banking frameworks, health care frameworks) being de-
veloped as Eclipse open source projects. This will require
enterprises to become more involved with contributing
to open source projects and it is something that I think
will take time. We have a great start with the Eclipse Open
Healthcare Framework (OHF) but we need to do more
to encourage large enterprises to begin collaborating in
open source projects.

JDJ: NetBeans seems to be gaining a lot of traction at
the moment, especially with some of the emerging and
BRIC markets. What is Eclipse doing in this space to
keep up?
Milinkovich: This is a funny question since we are
finding the BRIC countries to be our highest growth
areas. Our downloads from China are just exploding;
Evans Data recently reported our usage grew 30% in
India and 20% in Brazil. It is nice to hear that NetBeans
is doing well but I certainly don’t feel like we need to
keep up. In fact, I believe we are leading in the BRIC
countries.

JDJ: There is talk that Eclipse 4.0 will be a major rethink
of the platform and how it is put together. Can you share
with us what’s going on here?
Milinkovich: To be honest, everything about Eclipse
4.0 is conjecture at this point. EclipseCon was the first
time the idea had even been discussed by the com-
munity and not only are there no concrete plans yet
for 4.0, there isn’t even yet a firm commitment that it
is going to happen. Of course, I think it will, but it is
definitely too early for me to speculate what may or
may not be in it.
 What is going on at this point is the beginning of
a process – a community process to decide whether
doing a major new release – quite possibly with some
API breakages – is the right thing to do for our broad
ecosystem.

JDJ: If you could do Eclipse all over again, what would
you do differently and why?
Milinkovich: First, please remember, I did not “do”
Eclipse. A lot of people spent a considerable amount
of time and energy establishing Eclipse long before I
appeared on the scene in 2004. I have just been lucky
enough to be involved in the implementation of the vi-
sion they set out.
 Things are working remarkably well, so I am not sure
I would change anything. It is my belief Eclipse has
become a place where many organizations can col-
laborate and innovate on interesting new technology. I
truly believe Eclipse has the right technology, architec-
ture, and governance to make it an important platform
for future software innovation for many years to come.

• • •

Bill Roth has had a distinguished
career in Java, formerly being the
JEE spec lead at Sun Microsystems
where he worked on some of the early
EJB specifications. In a previous life,
Bill was a contributing editor to Java
Developer’s Journal. He maintains a
lively blog and is currently vice presi-
dent of the Workshop Business Unit at

BEA. Bill has kindly agreed to answer some questions on
BEA, Java, and all things interesting to do with the two.

JDJ.SYS-CON.com26 June 2007

JDJ: Can you tell us a little about
what’s going on at BEA at the moment?
Bill Roth: There is a lot going on in
Java right now at BEA. First off, we
are in the final stages of delivering
the next generation of BEA Work-
shop. This will allow the construction
of blended applications, the mix-
ing of commercial source and open
source. This will allow developers to
take advantage of the best of both
worlds, in the way they want. I call
it our “Burger King” strategy, where
developers can “Have it Your Way.”
 We’re also working on an exciting
new vision on how all the roles in IT
can work together. This effort, Work-
Space 360, is a vision for unifying the
various participants across the SOA
life cycle.
 WorkSpace 360 is intended to
break down the communication bar-
riers that exist between the various
participants in the SOA life cycle:
business analysts, architects, devel-
opers, and IT ops. It provides the
ability for the various participants to
share information and assets among
each other in a seamless, governed
manner. This is enabled through
a series of tools, communication
capabilities, and views tailored to the
individual stakeholders. At the core
of WorkSpace 360 is a centralized
metadata repository that serves as a
central source of record for enabling
the seamless flow of information
across the different stages of the SOA
life cycle.

JDJ: Recently there was some ruckus
in the press about BEA failing to an-
nounce third-quarter 2006, which
meant a possible delisting of their
stock. What happened here, and is
there any long-term damage?
Roth: We are among the over 200
publicly traded companies who are
reviewing their options granting
practices. BEA has been, since the

beginning of the investigation, work-
ing collaboratively with the SEC and
the stock exchange, and we continue
to keep them in the loop every step of
the way as we make progress. From
everything we have seen, NASDAQ
has worked constructively to avoid
delisting when the companies in-
volved are working in good faith to
resolve their issues and get financial
statements back on file as quickly as
possible. We believe we fall into this
category.

JDJ: For JRockit, do you see yourself as
being able to compete commercially
with Sun, whose JVM is freely available?
Roth: Of course we can. Not only is
JRockit freely available, but has been
shown to be 24–28% faster than the
leading JVM. We’ll compete with Sun’s
JVM any day of the week.

JDJ: The app server market is becom-
ing largely commoditized with open
source projects like JBoss, Tomcat, or
Geronimo. How can WebLogic compete
in this space and remain relevant?
Roth: Your question is based on an
erroneous assumption. While certain
segments of the application server
market are indeed commoditizing,
saying the entire market is “largely
commoditized” is overreaching. If this
were the case, our WebLogic busi-
ness would be shrinking, and it most
certainly is not.

JDJ: Is BEA aligned very strongly to
Java as a server-side programming
model, or are you embracing things
like PHP?
Roth: I have blogged about this in the
past. While we’re committed to the
J2EE programming model, it’s clear
that developers are looking at other
technologies. We have a number of
projects where we’re working with
next-generation dynamic languages
like PHP and Ruby, so we can be

ready as the enterprise developers
begin adopting them to build their
applications.

JDJ: What do you think of Web 2.0 and
all the AJAX excitement? Is this some-
thing you’re tooling for and adopting
in WebLogic?
Roth: AJAX is an exciting new area
of great technology, but it is also an
area of great chaos as well. There are
way too many AJAX frameworks and
no standards that are clearly emerg-
ing. Also, no one has clearly articu-
lated a declarative, standards-based
XAML-like way of defining the UI for
this technology. As such, our strategy
is to work with a small number of
vendors in the short term to deliver
value to our developers, and then
keep an eye on the standardization
process.

JDJ: What excites you most about what
is going on with BEA at the moment?
Roth: What excites me the most about
working at BEA is the pace of innova-
tion and our plans for the next five
years. When you couple the success
of AquaLogic along with our vision
for Workspace 360 and SOA 360, I am
even more convinced than before that
BEA is on the right track.

JDJ: What excites you most about what
is going on with Java at the moment?
Roth: Same answer, really. The pace
of innovation in the area of open
source software and frameworks is
really exciting. We’re also seeing a
shift in user requests to JSF from
Struts, but it also appears that Struts
2.0 is picking up steam as well. What’s
truly unique is that the bulk of the
innovation these days appears to be
happening outside of the Java Com-
munity Process, and I view this as a
good thing. The Java Community is
growing organically in ways that are
impossible to predict.

Q&A

WorkSpace 360 is intended to break down the communication
barriers that exist between the various participants
in the SOA life cycle: business analysts, architects,

developers, and IT ops”

“
–Bill Roth

���
���
��
���
��
���
���
��
��������� ���� ���� ������������� ����������� ���� ���� ������������� ����������� ���� ����
��
��������� ���� ���� ������������� ����������� ���� ���� ������������� ����������� ���� ������������� ���� ���� ������������� ����������� ���� ���� ������������� ����������� ���� ����

COPYRIGHT ©2006 SYS-CON MEDIA ALL RIGHTS RESERVED

��

���

���

���

��

��

������������������������������������

����������������������������������
�������������������������������
����������������������������������
���

��

���

���

��

���

��

���

����������

��

���

��

������������������������������� ��

���������������������

�����������������������������
����������������������������
���������������

������������
��������������������
�����������������������

����������������������
������������������������������

VISIT WWW.AJAXWORLD.COM FOR THE MOST COMPLETE UP-TO-DATE INFORMATION

Hyatt Regency Silicon Valley
Santa Clara, CA

������������������������
������������������������������

��
���
��
��

�������������������������

�������������������

���
���
���

���

��
��������������������������

���
��

��
���
���
��
���

��������� ���� ���� ������������� ����������� ���� ���� ������������� ����������� ���� ����

�����������
������������������
�����������
������������������

����������������
��������������������
����������������
�����������������
�������������

C
O

P
Y

R
IG

H
T

 ©
20

07
 S

Y
S

-C
O

N
 M

E
D

IA

 A
LL

 R
IG

H
T

S
 R

E
S

E
R

V
E

D

JDJ.SYS-CON.com28 June 2007

omcat is a great reference implemen-
tation of the Java EE specification and
is intended for desktop use by devel-
opers who are starting to learn about

Java EE or those who work on enterprise
applications and need an EE server for devel-
opment. However because Tomcat is free it
finds its way into production environments.
In this environment there are features of
Tomcat that don’t pass security audit reviews.
One of these features is the use of clear text
passwords in the server.xml file to create
data sources. The purpose of this article is to
show how encryption of the username and
password can be implemented thus closing a
potential security vulnerability.
 Configuring a container managed data
source with Tomcat is easy and well docu-
mented under the “JDBC DataSources”
section of Tomcat’s documentation (this
article uses Tomcat 5.0.28). The data source
configuration information is stored in
TOMCAT/conf/server.xml. The resource is
defined using the <Resource/> tag.

<Resource

 name=”jdbc/TestDB”

 auth=”Container”

 type=”javax.sql.DataSource”

/>

 The name attribute defines where the
resource is bound in JNDI. The auth at-
tribute will have either the value Application
or Container. Container means Tomcat will
provide the username and password to
connect to the resource whereas Applica-
tion means the application will provide
them. Container is specified because the
username and password will be entered
in server.xml. The type attribute is the fully
qualified name of the class returned when
the resource is looked up using JNDI.
 Next the resource needs to be configured.
This is the purpose of the <ResourcePa-
rams/> tag. For a JDBC resource, a basic
configuration is presented in Listing 1.
 The name attribute has the value jdbc/
TestDB, which must match a <Resource/>
tag. The “factory” name/value pair tells
Tomcat the fully qualified name of the
class that implements javax.naming.spi.

ObjectFactory. This class is responsible for
returning objects of the type defined by the
type attribute of the <Resource/> tag. The
rest of the name/value pairs of <param-
eter/> tags are passed to the “factory” in a
javax.naming.Reference object.
 Finally, the application has to be config-
ured to use this data source. This is done
by referencing the data source in /META-
INF/context.xml of the application’s WAR. A
<ResourceLink/> tag is added to context.xml.

<ResourceLink

 global=”jdbc/TestDB”

 name=”jdbc/SpiderMan”

 type=”javax.sql.DataSource”

/>

 The type attribute is the fully quali-
fied name of the class returned when the
resource is looked up using JNDI. The global
attribute must match a <Resource/> tag
in server.xml. The name attribute defines
where the resource is bound in JNDI. From
an application’s point of view, the location
specified by the name attribute is relative
to java:comp/env. Each application can
have its own conventions for JNDI lookup
names and the <ResourceLink/> tag is the
bridge between how an application does a
resource lookup and where the resource is
actually located. It’s good practice to have
the application use an atypical lookup
name. This makes your application more
portable to other EE servers because it’s not
accidentally bound to the conventions of
one EE server’s resource placement.
 For development environments or
personal use this configuration is accept-
able, however, in a production environment
the clear text username and password in
<ResourceParams/> is a security vulnerabil-
ity. If a production server is compromised,
the intruder would have easy access to
production data. With privacy concerns and
Sarbanes-Oxley requirements the harder it is
for an intruder to gain access to such data the
better.
 While Yahooing! I was surprised to dis-
cover I couldn’t find any instructions address-
ing this issue. Most search results related to
debating if securing the clear text username

and password is even necessary. The general
consensus seemed to be this security is not
necessary for two reasons. One, if an intruder
compromises a production server in a way
that would allow read access to server.xml
then the clear text username and password
is the least security concern. Two, Tomcat is a
reference implementation so it shouldn’t be
used in a production environment. Although
these are lively debates and can spark great
topics of conversation they do not address
the issue. What I need is a way to get rid of the
clear text username and password.
 I will present three possible solutions to
this issue. The first two are custom solutions
involving application updates while the third
takes advantage of Tomcat’s built-in extensi-
bility, requires no application updates and so
is a much more attractive solution.
 The first solution is to bypass Tomcat
altogether and not configure a data source.
With no data source there’s no clear text
username and password in server.xml so
the problem is solved. However applications
still need database connections. With no
container-managed database pool each ap-
plication will have to do its own pooling. This
brings up all sorts of problems. Applications
will need knowledge of the database and
how to access it, unnecessary plumbing code
is needed to manage the pool, data access
objects will no longer be coded to EE specs
making them less portable, no built-in or
plug-in transaction management resulting in
more plumbing code, an ever-growing num-
ber of connections as more applications are
developed, performance degradation during
high-traffic periods as connections become
scarce, support overhead from managing
many individual configurations, and the list
goes on. It’s possible each of these problems
can be solved but as you solve them your
code moves further and further from the EE
specs. Because of all these problems, this is
not an attractive solution.
 The second solution is to move the re-
sponsibility for database authentication from
Tomcat to the application. Recall the auth
attribute of the <Resource/> tag. If the value
is Application, the application is responsible
for providing the username and password.
The Tomcat administrator can delete the

Case Study

by Michael J. Remijan

Securing Tomcat Database Passwords

T

Michael J. Remijan is

a Senior Application

Developer at Monsanto in

St. Louis, MO. He designs

and develops mission

critical EE applications.

Michael has a BS in

Mathematics/Computer

Science from the Univer-

sity of Illinois, MBA in

Technology Mangement

from the University of

Phoenix. Sun Certified

Web Component Devel-

oper. Pursuant Masters in

Computer Science.

mjremijan@yahoo.com

How encrypting the username and password can be implemented

����������������
�������������������������������

COPYRIGHT ©2007 SYS-CON MEDIA ALL RIGHTS RESERVED

������������������������������
���

��

������������������������
����������������������������

�������������������������������

��������������������������������

����������������������������������

����������������������������

�������������������

������������������������������
��������������������������

�����������������������������

���������������������������������

��������������������������

������������������

���������������������������������

�����������������������������������

�������������
�������

���

�������������������

������������������������
���������������

������

� �� ����������������
� � ����������

� �� ����������������
� � �������������

� �� �����������
� � ��������������������
� � ����������

� ��� ������������������������
� � ��������������������
� � ������������������������������������

���� �����������������������
� � �������������

���� ����������������
� � �����������������������
� � ���������������������������������
� � ������������������������������

���� ��������������������������
� � ���

���� �������������������
� � ����������������������
� � ������������������

��������������

���������������
�����������������������

���������������������

� ��� ���������� �
� �������������
� � �����������

������������������

��
���
��

���
��
��
����������������������������

��
��
��
��
���
���

���
��

����
��������

����

����������

����������
����������������������

����������������

�
������������

�
�������

�
�������������

�
�����������

� ������������

�
����������������

� ���

�
����������

�
������������

� ���

�
����

�
�������

� ��������������

���������������

�����������

�
�����������

� ����������������

�
���������������

�
�����������������

�
��������������������

�
������������������

� �����������

�
����

�
�����������������������

�
����������������������

�
���������������������

�
�����

�
�����������������������

����������

����������
����������������������

��

��
����������

����������
������������������������������

����������
����������

����������
����������

����������
������������������������������

����������
��������������������

����������
������������������������������

����������
����������

����������
����������

����������
������������������������������

����������
����������

��
����������

����������������������
������������������������������

����������������������
����������

����������������������
����������

����������������������
������������������������������

����������������������
��������������������

����������������������
������������������������������

����������������������
����������

����������������������
����������

����������������������
������������������������������

����������������������
����������
����������

����������
����������������������

������������

�������������������������������������
����������������������

����������
�������������������������������

����������������������������

���
���

��

���

������������������������������

��������
������������

������������������������

��
������������������������

��������
����

3

JDJ.SYS-CON.com30 June 2007

Q&A

username and password parameters from
server.xml and the Developer would code the
username and password into the application.
Typically the first time JNDI is used to look up a
DataSource is when the username and password
are set. The code in Listing 2 gives an idea of
what this would look like for Tomcat. Although
the example doesn’t use any kind of encryption
it’s not difficult to plug in an encryption strategy.
This solution also has problems. The applica-
tion is now responsible for either knowing the
username and password or knowing the encryp-
tion strategy. The application also needs to know
the real class implementing DataSource (in the
case of Commons DBCP) so the username and
password can be provided. This could make the
application not portable to another EE server. So
this is not an attractive solution either.
 The third solution is to take advantage of
Tomcat’s built-in extensibility. Inside the <Re-
sourceParams/> tag Tomcat offers the ability
to specify the fully qualified name of the Java
class that implements the javax.naming.spi.
ObjectFactory interface. This class is responsible
for returning implementations of javax.sql.
DataSource. By default Tomcat uses org.apache.
commons.dbcp.BasicDataSourceFactory and
this class requires <ResourceParams/> to have
clear text username and password values. So
why not create a class that extends BasicDa-
taSourceFactory and is configured with an
encrypted password instead? For the purposes
of this article I’ll use a simple Base64 encoding
but the concept can be easily extended to any
other method.
 The source code for BasicDataSourceFactory
has two important methods. They are:

public Object

 getObjectInstance(

 Object o

, Name n

, Context c

, Hashtable h)

public static DataSource

 createDataSource(

Properties p

)

 Tomcat creates an instance of BasicDa-
taSourceFactory by calling its no-argument
constructor. When a DataSource is needed the
getObjectInstance(…) method is called. The
BasicDataSourceFactory class implements this
method in the following way. First it typecasts
the Object parameter to Reference. Then all of
the name/value pairs are removed from the
Reference object and set in a Properties object.
Finally, the Properties object is passed to the
createDataSource(…) method where it’s as-
sumed the username and password exist in the
Properties object as clear text.
 To secure Tomcat database usernames
and passwords, create a new class named
EncryptedDataSourceFactory that extends Ba-
sicDataSourceFactory. This new class is going to
override the getObjectInstance(…) method. The
new method is implemented in the following
way. First it will remove the encrypted username
and passwords from the Reference object. Next,
it will decrypt them. Then it will put the de-
crypted values into the Reference object. Finally
it will call the getObjectInstance(…) method of
the super class so it can take care of creating the
DataSource. See the source code in Listing 3.
(Listing 3 can be downloaded from the online
version of this article at http://java.sys-con.
com)
 In the source code the “username” string of
the setUsername() method and the “password”
string of the setPassword() method refer to the
<name/> value of:

<parameter>

 <name>username</name>

 <value>postgres_user</value>

 </parameter>

 <parameter>

 <name>password</name>

 <value>postgres_pass</value>

 </parameter>

 These strings have corresponding constants
in the BasicDataSourceFactory class but the con-
stants are declared private so can’t be used. The
find() method throws an exception if not found
because decryption will fail if there’s nothing to
decrypt. The decrypt() method uses a Base64
decoder that isn’t secure but adequately demon-
strates the concept. Finally the replace() method
removes the encrypted values and puts in the
decrypted values. When getObjectInstance(…)
of the super class is called, it has the clear text
passwords and is completely unaware that the
values in server.xml are actually encrypted.
 Using EncryptedDataSourceFactory is
simple. First drop the org.moss.jdj.jdbc-yyyy.
mm.dd.x.jar file into TOMCAT/server/lib. Next,
get a Base64 encoding of the username and
password. A simple Yahoo! search of “online
base64 encoder” will find sites that will do it. Fi-
nally, edit server.xml and replace the username
and password values with their corresponding
Base64 equivalents and set the factory value to
org.moss.jdj.dbcp.EncryptedDataSourceFac-
tory. Start up Tomcat and see it in action.
 Using Tomcat’s built-in extensibility like this
is an attractive solution. It fulfills security audit
requirements by removing clear text usernames
and passwords but it also lets applications be
coded to EE specs. Using this solution doesn’t
put any unnecessary or unwanted responsi-
bility in applications. Applications can be devel-
oped to fulfill business requirements and don’t
have to worry about plumbing code like initial-
izing or shutting down a database connection
pool properly, maintaining a custom transac-
tion system to roll back on errors, or imple-
menting an encryption strategy. Plus, when
the time comes to move away from Tomcat the
applications will be ready. The code in Listing
3 will be thrown away but small amounts of
throwaway code is much better than the effort
needed to go back and update applications.

Listing 1
<ResourceParams name=”jdbc/TestDB”>
 <parameter>
 <name>factory</name>
 <value>
org.apache.commons.dbcp.BasicDataSourceFactory
 </value>
 </parameter>
 <parameter>
 <name>url</name>
 <value>jdbc:postgresql://localhost/db</value>
 </parameter>
 <parameter>
 <name>driverClassName</name>
 <value>org.postgresql.Driver</value>
 </parameter>
 <parameter>
 <name>username</name>
 <value>postgres_user</value>

 </parameter>
 <parameter>
 <name>password</name>
 <value>postgres_pass</value>
 </parameter>
</ResourceParams>

Listing 2
DataSource
 ds = (DataSource)ctx.lookup(“java:comp/env/jdbc/SpiderMan”);

org.apache.tomcat.dbcp.dbcp.BasicDataSource
 bds = (org.apache.tomcat.dbcp.dbcp.BasicDataSource)ds;

bds.setUsername(“MyUsername”);
bds.setPassword(“MyPassword”);

return bds.getConnection();

��

������������
��������������������
���������������������������
������������������

�����������������
���������������

����������������

����������������
�����������������������������

����������������������

�����������
��������������

�������������

����������

��������

����

�������������������������
�������������������������

�����������������

��
��
���
����������������

���
��
���
��

���
���

�����������������
��������������������������������

��

COPYRIGHT ©2007 SYS-CON MEDIA ALL RIGHTS RESERVED

JDJ.SYS-CON.com32 June 2007

–continued from page 6

Model-Based Testing for Java Applications

 An issue of model-based testing is the
skill set of the people using this approach.
Classical manual testers and/or automated
scripters will have a difficult time creating
the framework needed to execute this kind
of testing. Resources with in-depth knowl-
edge of fully functioning programming lan-
guages (such as Java) are needed to code
this approach. Either testers with excep-
tional programming skills or developers
are needed to implement the model-based
testing approach.
 It’s also difficult and time-consuming
to define the correct inputs. Testing and
development teams that have complete
documentation to draw from will have an
easier time developing inputs. Without such
documentation, creating proper inputs can
be more trouble than it’s worth. One side
benefit of model-based testing can be that
it’s an impetus for creating good documen-
tation and coding guidelines. Establishing
in-house guidelines for writing code enables
others to easily check, work with, maintain,
and reuse code. While each coder may
prefer his or her own methods, personal
programming idiosyncrasies, particularly
of the undocumented sort, can baffle other
developers – and perhaps even the original
developer when they attempt to rework
code at a later date.
 Standardizing the development process
doesn’t mean it becomes stagnant. Java
programmers have a wealth of best prac-
tices information to draw from, created
and shared by members of the develop-
ment community. Regarding security
flaws, since most vulnerability attacks take
advantage of common and well-known
mistakes in programming code, com-
plying with best practice development
rules is a useful way to avoid potential
problems. Each problem that’s prevented
by complying with best practice rules is
one less problem that the team needs to
identify, analyze, and correct later in the
development process (or that will impact
the deployed application.)
 One of the benefits of model-based test-
ing can be more thoughtful programming,
since programmers and/or testers must
understand in depth how an application
is actually intended to work in order to
develop model-based tests. Model-based
testing can also hone more of an aware-

ness of how actions interact and what
effects these interactions have on code
– simply thinking through the process of
how to test an application can result in
better coding.
 All that said, only you can determine
whether model-based testing is a concept
that’s likely to suit your project or compa-
ny’s culture. If you or your team already has
a tendency to work under tight deployment
deadlines, adding model-based testing to
the mix may create unnecessary stress.

Input Issues
 A good way to get started with model-
based testing with your Java applications is
to pick a small, easy-to-describe subset of
your application to test. Choose five to 10
primary states, generate inputs for them,
and run this basic test for at least a few
hours – preferably a few days – to see what
problems the test turns up. Remember that
at this point you’re primarily testing and
refining your input-creation skills, even if
the tests do turn up some bugs that had
been hidden and especially if they don’t it
would be incorrect to assume you have the
model-based testing process all worked
out. Continue expanding the complexity of
the subsets you test until you’re confident
that your inputs are correct, at that point
you can begin to trust your test results.
 When first starting to develop your
inputs, you’ll want to think about all the
ways you intend the application to be used,
and all the ways it can potentially be used
and how you might attempt to abuse the
application if you wanted to crack it. And
since a big part of a Web-based applica-
tion’s success will be judged by its users
on performance issues, consider testing
scalability and reliability as well as looking
for security flaws.
 Thankfully model-based testing doesn’t
require programmers/testers to predict
and fully define every single possible (or
bizarre) interaction a user and an applica-
tion might conjure up. Instead you will
define the states, actions, and transitions
for your application. So why did you have
to think through how someone might use
or abuse your application? Because having
both a big picture and detailed view of how
your application should and could act will
help you define those inputs. Once you’ve
defined them, the tool will generate the test
cases.
 Next you’ll need to set initial test objec-
tives. When you’re just beginning to work
with model-based testing this won’t be an

issue, since you’ll be running very limited
tests on small subsets of your application.
But if you decide to incorporate this tool
into your test process you’ll need to clarify
objectives before you begin testing. Since
there are potentially an infinite number
of tests that can be run in model-based
testing, the best practice approach is to
risk-prioritize the work. Decide which
areas are likely to be at highest risk and
then proceed to develop objectives for the
test in descending order of perceived risk.
As you run the tests, analyze the results
and fix bugs, you’ll continue to modify the
model until you’ve met your testing objec-
tives. Make sure to document what you’ve
discovered and how the problem should be
or was addressed.
 In general, model-based testing can be
a good way to augment the testing process
that you already use. You’ll want to put
your application through other testing
processes, obviously, with Java you typi-
cally need to ascertain how the application
works in tandem with a Web browser, or
how it functions in an embedded mobile
system. You’ll likely want to run scalabil-
ity tests to see how the application holds
up under heavy use. There are, as you’ve
no doubt noticed, dozens of excellent
tools – many of them open source – and
verification programs available for Java
application testing. Make use of whatever
suits your application and its intended
use. If you’re developing an application for
a client you may want to confer with them
to see if they require or would prefer that
you/your team performs other specific
analysis of the application during the test-
ing process. If your application is intended
for the mobile market you may want to
have it tested under the Unified Testing
Criteria (www.javaverified.com), a set of
mobile industry-approved automated tests
that check Application Launch, Function-
ality, Operation, User Interface, Security,
Network, and Localization abilities, so that
you can use the “Java Powered” logo in
your marketing.
 Model-based testing is not a marvelous
magic bullet that will quickly and effort-
lessly spot every single flaw in a program,
nor will it necessarily produce results more
economically or effectively than standard
automated tests. Its ability to generate non-
repetitive, real-world user tests is obviously
of real value particularly in projects that
tend to be more intricate such as real-time
and embedded applications, assuming that
good inputs can be produced.

Testing

by Bill Hayduk

33June 2007JDJ.SYS-CON.com

���������������������������

����������������������������������

��������������������������������

���������������������������

����������������������������������

�������������

������������������������������
�����������������

���� ����

��

������
����

��������
���������

���������������������������
�������������������������

��������������������
�������������

�����������������������

���� ���������������������������������

�����������������
�����������

����������������
��������������

���������

Advertiser Index

General Conditions: The Publisher reserves the right to refuse any advertising not meeting the standards that are
set to protect the high editorial quality of Java Developer’s Journal. All advertising is subject to approval by the
Publisher. The Publisher assumes no liability for any costs or damages incurred if for any reason the Publisher
fails to publish an advertisement. In no event shall the Publisher be liable for any costs or damages in excess
of the cost of the advertisement as a result of a mistake in the advertisement or for any other reason. The
Advertiser is fully responsible for all financial liability and terms of the contract executed by the agents or agen-
cies who are acting on behalf of the Advertiser. Conditions set in this document (except the rates) are subject
to change by the Publisher without notice. No conditions other than those set forth in this “General Conditions
Document” shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the
content of their advertisements printed in Java Developer’s Journal. Advertisements are to be printed at the
discretion of the Publisher. This discretion includes the positioning of the advertisement, except for “preferred
positions” described in the rate table. Cancellations and changes to advertisements must be made in writing
before the closing date. “Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.

 Advertiser URL Phone Page

This index is provided as an additional service to our readers. The publisher does not assume any liability for errors or omissions.

 AJAXWorld Conference & Expo www.ajaxworld.com 201-802-3022 27

 Altova www.altova.com 978-816-1600 Cover II

 Business Objects www.businessobjects.com/rareoccurrence 888-333-6007 8-9

 DiSTI www.simulation.com/jdj 407-206-3390 19

 ICEsoft www.icesoft.com 877-263-3822 17

 Infragistics www.infragistics.com/jsf 800-231-8588 7

 InterSystems www.intersystems.com/ja1p Cover IV

 Java Developer’s Journal www.jdj.sys-con.com 888-303-5282 33

 JadeLiquid www.webrenderer.com 13

 Northwoods Software Corp. www.nwoods.com 800-434-9820 25

 Perforce Software www.perforce.com 4

 SOA and EOS 2007 Conference & Expo www.soaworld2007.com 201-802-3020 29

 Software FX www.softwarefx.com 561-999-8888 Cover III

Virtualization Conference & Expo 2007 www.virtualizationconference.com 201-802-3020 31

JDJ.SYS-CON.com34 June 2007

t the JavaOne conference earlier in
May, Sun launched the OpenJDK
project (http://openjdk.java.net).
The OpenJDK project is Sun’s Java

SE implementation under the GPL license.
While portions of the project, such as the
compiler and Hotspot, were released at an
earlier time, at the JavaOne conference all
the class libraries and other source code that
together making up JDK7 were launched.
At the same time, Sun also announced an
interim Governance Board for OpenJDK.
This board is comprised of two people from
Sun and three from the community. Mark
Reinhold (chief engineer for Java SE) and
Simon Phipps (Sun’s Chief Open Source Of-
ficer) both from Sun, and Dalibor Topic (of
GNU Classpath and Kaffe.org fame), Doug
Lea (professor at SUNY), and Fabiane Nardon
(CTO of VIDATIS and JavaTools community
manager) have graciously accepted invita-
tions to serve on the interim board. The key
task before them is to write a constitution for
the OpenJDK community, have it ratified by
the membership, and then put their seats up
for re-election.
 An oft-asked question during the confer-
ence was about any relationship between
this Governance Board and the JCP Executive
Committees and also between projects at
OpenJDK and the JCP’s JSRs. It occurred to
me that others, in addition to the conference
attendees, would have these questions and so
I would like to demystify this here.
 The role of the JCP was and is for the
industry to develop and agree upon Java

specifications. The OpenJDK project is Sun’s
open source project for their implementa-
tion of the Java SE and related specifications
as they are produced by the JCP. The JCP
Executive Committee (EC) votes to approve
proposals for standardization. The OpenJDK
Governance Board is the body of ultimate
resolution for OpenJDK and the maintainer
of the OpenJDK Constitution.
 The OpenJDK Constitution will describe
how the OpenJDK community makes deci-
sions, who is considered a member, how
projects are started, how contributions are
made, and how these are accepted. In short,
it will describe how the OpenJDK community
operates. The (interim) Governance Board
does not make technical decisions. That is
done by the projects and groups in the Open-
JDK community. The Governance Board does
not decide on Java specifications. The JSR
expert groups in the JCP work to define the
draft and final Java specifications. The JCP
Executive Committee then votes to formally
approve these specifications.
 The JCP’s Executive Committees are in-
tended to have broad industry and geograph-
ical representation. The EC members formal
voting on JSR proposals thus lends industry
credibility to the standardization efforts of
the Java community. The OpenJDK commu-
nity is a meritocracy in which developers col-
laborate with Sun engineers on the develop-
ment of the JDK. As new participants in this
community gain experience and reputation,
their responsibilities and abilities will also
increase, for example, taking up the role of

committer or as project lead for a particular
port of the JDK code base. I would expect that
this rise in fame and responsibility may then
also lead such individuals to be elected by the
membership to the Governance Board.
 While the OpenJDK Governance Board
and the JCP Executive Committees have very
distinct, and non-overlapping, roles I do
expect there to be practical interaction and
collaboration between the two communities.
For example, I expect that most Java SE Spec
Leads (i.e., leaders of JSRs that feed into SE or
JDK releases) to be project leaders and code
committers in the OpenJDK community, and
probably a similar overlap between many key
expert group members in the JCP and code
contributors to the OpenJDK community.
I also expect that the openness and trans-
parency of the JDK source code under the
GPL license will lead developers to provide
feedback on the (draft) specifications that the
code is based on, which will have a positive
quality and progress impact on the JSRs in
the JCP.
 The interim Governance Board is just start-
ing to draft the Constitution, and rough esti-
mates are it will take 6–9 months to complete
the effort and have the document ratified. In
the meantime the OpenJDK community is
open for business. Sun has established a set of
guidelines for the community on how to start
projects and make contributions while the in-
terim board does its work. You can find links
to the work of the board, these guidelines,
and the OpenJDK Charter on the OpenJDK
Web site at http://openjdk.java.net.

JSR Watch

Onno Kluyt

The JCP and the
OpenJDK Community

A

Onno Kluyt is

director of the

Community

Growth group at

Sun Microsystems

and the Chair of

the JCP.

onno@jcp.org

Conference Presentations, Magic Shows,
and the Five-Ring Circus
by Joe Winchester, Desktop Java Editor
–continued from page 3

 During this five-ring podium act it matters little what alphabet
soup of technology is being showcased or whether it’s server- or cli-
ent-side scripting, just whether or not the demo works and whether
the IDE jocks can keep the magic alive. Often the emcee on stage is a
senior development manager who outranks the engineer who, while
trying to stoke the IDE into life, will remark on how his pay review is
coming up or, when it unfortunately bombs, how he’s lost his bonus.
The clear analogy here is to the monkey who is desperately trying
to perform some tricks for his master, the organ grinder. Only if the
audience is amused will the monkey be rewarded with peanuts.

Back to Basics
 Conferences are costly to attend, difficult to put on, and involve
thousands of people travelling thousands of miles on either their
own, or their company’s expense. I love going for the people I meet,
the discussions I have, and the concentration of like-minded techni-
cal talent in the same venue for a few days. However, I’d like to see
the whole presentation format go way back to basics and rely less on
being a venue for travelling technology salesmen and have instead
education sessions that have more in common with a good physics
lesson in a high school classroom than a Las Vegas smoke and mir-
rors conjuring act. The conference presenters are often the top of
their class in terms of intellectual talent and ideas, and are at the cut-
ting edge of implementing, deploying, or understanding technology.
Let’s try in the future to get the best from their presence, rather than
resort to having them perform circus tricks on stage.

Embed the world’s fastest object database.
A golden opportunity to make Java applications richer.
When you embed Caché in your applications, they become more valuable. Caché dramatically
improves speed and scalability while decreasing hardware and administration requirements.
This innovative object database runs SQL queries faster than relational data-
bases. And with InterSystems’ JALAPEÑO™ technology for Java developers,
Caché eliminates object-relational mapping. Which means Caché doesn’t just
speed up the performance of applications, it also accelerates their development.
Caché is available for Unix, Linux, Windows, Mac OS X, and OpenVMS – and it is deployed
in more than 100,000 systems ranging from two to over 50,000 users. Embed our innova-
tions, enrich your applications.

Download a free, fully functional, no-time-limit copy of Caché, or request it on CD, at InterSystems.com/Ja1P

© 2007 InterSystems Corporation. All rights reserved. InterSystems Caché is a registered trademark of InterSystems Corporation. 3-07 ValCacheJa1 JDJ

Make Java
Applications

More
Valuable

ValCacheJa1_JDJ:Layout 1 3/12/07 6:27 PM Page 1

